1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <algorithm>
16 #include <string>
17 #include <functional>
18 #include <memory>
19 #include <vector>
20 
21 #include <assert.h>
22 #include <errno.h>
23 #include <stdint.h>
24 #include <stdlib.h>
25 #include <string.h>
26 
27 #include <openssl/aead.h>
28 #include <openssl/bn.h>
29 #include <openssl/curve25519.h>
30 #include <openssl/digest.h>
31 #include <openssl/err.h>
32 #include <openssl/ec.h>
33 #include <openssl/ecdsa.h>
34 #include <openssl/ec_key.h>
35 #include <openssl/evp.h>
36 #include <openssl/hrss.h>
37 #include <openssl/nid.h>
38 #include <openssl/rand.h>
39 #include <openssl/rsa.h>
40 
41 #if defined(OPENSSL_WINDOWS)
42 OPENSSL_MSVC_PRAGMA(warning(push, 3))
43 #include <windows.h>
44 OPENSSL_MSVC_PRAGMA(warning(pop))
45 #elif defined(OPENSSL_APPLE)
46 #include <sys/time.h>
47 #else
48 #include <time.h>
49 #endif
50 
51 #include "../crypto/internal.h"
52 #include "internal.h"
53 
54 
55 // TimeResults represents the results of benchmarking a function.
56 struct TimeResults {
57   // num_calls is the number of function calls done in the time period.
58   unsigned num_calls;
59   // us is the number of microseconds that elapsed in the time period.
60   unsigned us;
61 
PrintTimeResults62   void Print(const std::string &description) {
63     printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
64            description.c_str(), us,
65            (static_cast<double>(num_calls) / us) * 1000000);
66   }
67 
PrintWithBytesTimeResults68   void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
69     printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
70            num_calls, description.c_str(), us,
71            (static_cast<double>(num_calls) / us) * 1000000,
72            static_cast<double>(bytes_per_call * num_calls) / us);
73   }
74 };
75 
76 #if defined(OPENSSL_WINDOWS)
time_now()77 static uint64_t time_now() { return GetTickCount64() * 1000; }
78 #elif defined(OPENSSL_APPLE)
time_now()79 static uint64_t time_now() {
80   struct timeval tv;
81   uint64_t ret;
82 
83   gettimeofday(&tv, NULL);
84   ret = tv.tv_sec;
85   ret *= 1000000;
86   ret += tv.tv_usec;
87   return ret;
88 }
89 #else
time_now()90 static uint64_t time_now() {
91   struct timespec ts;
92   clock_gettime(CLOCK_MONOTONIC, &ts);
93 
94   uint64_t ret = ts.tv_sec;
95   ret *= 1000000;
96   ret += ts.tv_nsec / 1000;
97   return ret;
98 }
99 #endif
100 
101 static uint64_t g_timeout_seconds = 1;
102 static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384};
103 
TimeFunction(TimeResults * results,std::function<bool ()> func)104 static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
105   // total_us is the total amount of time that we'll aim to measure a function
106   // for.
107   const uint64_t total_us = g_timeout_seconds * 1000000;
108   uint64_t start = time_now(), now, delta;
109   unsigned done = 0, iterations_between_time_checks;
110 
111   if (!func()) {
112     return false;
113   }
114   now = time_now();
115   delta = now - start;
116   if (delta == 0) {
117     iterations_between_time_checks = 250;
118   } else {
119     // Aim for about 100ms between time checks.
120     iterations_between_time_checks =
121         static_cast<double>(100000) / static_cast<double>(delta);
122     if (iterations_between_time_checks > 1000) {
123       iterations_between_time_checks = 1000;
124     } else if (iterations_between_time_checks < 1) {
125       iterations_between_time_checks = 1;
126     }
127   }
128 
129   for (;;) {
130     for (unsigned i = 0; i < iterations_between_time_checks; i++) {
131       if (!func()) {
132         return false;
133       }
134       done++;
135     }
136 
137     now = time_now();
138     if (now - start > total_us) {
139       break;
140     }
141   }
142 
143   results->us = now - start;
144   results->num_calls = done;
145   return true;
146 }
147 
SpeedRSA(const std::string & selected)148 static bool SpeedRSA(const std::string &selected) {
149   if (!selected.empty() && selected.find("RSA") == std::string::npos) {
150     return true;
151   }
152 
153   static const struct {
154     const char *name;
155     const uint8_t *key;
156     const size_t key_len;
157   } kRSAKeys[] = {
158     {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len},
159     {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len},
160   };
161 
162   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) {
163     const std::string name = kRSAKeys[i].name;
164 
165     bssl::UniquePtr<RSA> key(
166         RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len));
167     if (key == nullptr) {
168       fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
169       ERR_print_errors_fp(stderr);
170       return false;
171     }
172 
173     std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]);
174     const uint8_t fake_sha256_hash[32] = {0};
175     unsigned sig_len;
176 
177     TimeResults results;
178     if (!TimeFunction(&results,
179                       [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
180           // Usually during RSA signing we're using a long-lived |RSA| that has
181           // already had all of its |BN_MONT_CTX|s constructed, so it makes
182           // sense to use |key| directly here.
183           return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
184                           sig.get(), &sig_len, key.get());
185         })) {
186       fprintf(stderr, "RSA_sign failed.\n");
187       ERR_print_errors_fp(stderr);
188       return false;
189     }
190     results.Print(name + " signing");
191 
192     if (!TimeFunction(&results,
193                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
194           return RSA_verify(
195               NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
196               sig.get(), sig_len, key.get());
197         })) {
198       fprintf(stderr, "RSA_verify failed.\n");
199       ERR_print_errors_fp(stderr);
200       return false;
201     }
202     results.Print(name + " verify (same key)");
203 
204     if (!TimeFunction(&results,
205                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
206           // Usually during RSA verification we have to parse an RSA key from a
207           // certificate or similar, in which case we'd need to construct a new
208           // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we
209           // were to use |key| directly instead, then these costs wouldn't be
210           // accounted for.
211           bssl::UniquePtr<RSA> verify_key(RSA_new());
212           if (!verify_key) {
213             return false;
214           }
215           verify_key->n = BN_dup(key->n);
216           verify_key->e = BN_dup(key->e);
217           if (!verify_key->n ||
218               !verify_key->e) {
219             return false;
220           }
221           return RSA_verify(NID_sha256, fake_sha256_hash,
222                             sizeof(fake_sha256_hash), sig.get(), sig_len,
223                             verify_key.get());
224         })) {
225       fprintf(stderr, "RSA_verify failed.\n");
226       ERR_print_errors_fp(stderr);
227       return false;
228     }
229     results.Print(name + " verify (fresh key)");
230   }
231 
232   return true;
233 }
234 
SpeedRSAKeyGen(const std::string & selected)235 static bool SpeedRSAKeyGen(const std::string &selected) {
236   // Don't run this by default because it's so slow.
237   if (selected != "RSAKeyGen") {
238     return true;
239   }
240 
241   bssl::UniquePtr<BIGNUM> e(BN_new());
242   if (!BN_set_word(e.get(), 65537)) {
243     return false;
244   }
245 
246   const std::vector<int> kSizes = {2048, 3072, 4096};
247   for (int size : kSizes) {
248     const uint64_t start = time_now();
249     unsigned num_calls = 0;
250     unsigned us;
251     std::vector<unsigned> durations;
252 
253     for (;;) {
254       bssl::UniquePtr<RSA> rsa(RSA_new());
255 
256       const uint64_t iteration_start = time_now();
257       if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) {
258         fprintf(stderr, "RSA_generate_key_ex failed.\n");
259         ERR_print_errors_fp(stderr);
260         return false;
261       }
262       const uint64_t iteration_end = time_now();
263 
264       num_calls++;
265       durations.push_back(iteration_end - iteration_start);
266 
267       us = iteration_end - start;
268       if (us > 30 * 1000000 /* 30 secs */) {
269         break;
270       }
271     }
272 
273     std::sort(durations.begin(), durations.end());
274     printf("Did %u RSA %d key-gen operations in %uus (%.1f ops/sec)\n",
275            num_calls, size, us,
276            (static_cast<double>(num_calls) / us) * 1000000);
277     const size_t n = durations.size();
278     assert(n > 0);
279 
280     // |min| and |max| must be stored in temporary variables to avoid an MSVC
281     // bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf
282     // warning tries to retain the distinction and suggest %zu for size_t
283     // instead of %u. It gets confused if std::vector<unsigned> and
284     // std::vector<size_t> are both instantiated. Being typedefs, the two
285     // instantiations are identical, which somehow breaks the size_t vs unsigned
286     // metadata.
287     unsigned min = durations[0];
288     unsigned median = n & 1 ? durations[n / 2]
289                             : (durations[n / 2 - 1] + durations[n / 2]) / 2;
290     unsigned max = durations[n - 1];
291     printf("  min: %uus, median: %uus, max: %uus\n", min, median, max);
292   }
293 
294   return true;
295 }
296 
align(uint8_t * in,unsigned alignment)297 static uint8_t *align(uint8_t *in, unsigned alignment) {
298   return reinterpret_cast<uint8_t *>(
299       (reinterpret_cast<uintptr_t>(in) + alignment) &
300       ~static_cast<size_t>(alignment - 1));
301 }
302 
ChunkLenSuffix(size_t chunk_len)303 static std::string ChunkLenSuffix(size_t chunk_len) {
304   char buf[32];
305   snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len,
306            chunk_len != 1 ? "s" : "");
307   return buf;
308 }
309 
SpeedAEADChunk(const EVP_AEAD * aead,std::string name,size_t chunk_len,size_t ad_len,evp_aead_direction_t direction)310 static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name,
311                            size_t chunk_len, size_t ad_len,
312                            evp_aead_direction_t direction) {
313   static const unsigned kAlignment = 16;
314 
315   name += ChunkLenSuffix(chunk_len);
316   bssl::ScopedEVP_AEAD_CTX ctx;
317   const size_t key_len = EVP_AEAD_key_length(aead);
318   const size_t nonce_len = EVP_AEAD_nonce_length(aead);
319   const size_t overhead_len = EVP_AEAD_max_overhead(aead);
320 
321   std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
322   OPENSSL_memset(key.get(), 0, key_len);
323   std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
324   OPENSSL_memset(nonce.get(), 0, nonce_len);
325   std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
326   // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the
327   // same size. However, in the direction == evp_aead_open case we still use
328   // non-scattering seal, hence we add overhead_len to the size of this buffer.
329   std::unique_ptr<uint8_t[]> out_storage(
330       new uint8_t[chunk_len + overhead_len + kAlignment]);
331   std::unique_ptr<uint8_t[]> in2_storage(
332       new uint8_t[chunk_len + overhead_len + kAlignment]);
333   std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
334   OPENSSL_memset(ad.get(), 0, ad_len);
335   std::unique_ptr<uint8_t[]> tag_storage(
336       new uint8_t[overhead_len + kAlignment]);
337 
338 
339   uint8_t *const in = align(in_storage.get(), kAlignment);
340   OPENSSL_memset(in, 0, chunk_len);
341   uint8_t *const out = align(out_storage.get(), kAlignment);
342   OPENSSL_memset(out, 0, chunk_len + overhead_len);
343   uint8_t *const tag = align(tag_storage.get(), kAlignment);
344   OPENSSL_memset(tag, 0, overhead_len);
345   uint8_t *const in2 = align(in2_storage.get(), kAlignment);
346 
347   if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
348                                         EVP_AEAD_DEFAULT_TAG_LENGTH,
349                                         evp_aead_seal)) {
350     fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
351     ERR_print_errors_fp(stderr);
352     return false;
353   }
354 
355   TimeResults results;
356   if (direction == evp_aead_seal) {
357     if (!TimeFunction(&results,
358                       [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag,
359                        &ctx, &nonce, &ad]() -> bool {
360                         size_t tag_len;
361                         return EVP_AEAD_CTX_seal_scatter(
362                             ctx.get(), out, tag, &tag_len, overhead_len,
363                             nonce.get(), nonce_len, in, chunk_len, nullptr, 0,
364                             ad.get(), ad_len);
365                       })) {
366       fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
367       ERR_print_errors_fp(stderr);
368       return false;
369     }
370   } else {
371     size_t out_len;
372     EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
373                       nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
374 
375     ctx.Reset();
376     if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
377                                           EVP_AEAD_DEFAULT_TAG_LENGTH,
378                                           evp_aead_open)) {
379       fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
380       ERR_print_errors_fp(stderr);
381       return false;
382     }
383 
384     if (!TimeFunction(&results,
385                       [chunk_len, overhead_len, nonce_len, ad_len, in2, out,
386                        out_len, &ctx, &nonce, &ad]() -> bool {
387                         size_t in2_len;
388                         // N.B. EVP_AEAD_CTX_open_gather is not implemented for
389                         // all AEADs.
390                         return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len,
391                                                  chunk_len + overhead_len,
392                                                  nonce.get(), nonce_len, out,
393                                                  out_len, ad.get(), ad_len);
394                       })) {
395       fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
396       ERR_print_errors_fp(stderr);
397       return false;
398     }
399   }
400 
401   results.PrintWithBytes(
402       name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
403   return true;
404 }
405 
SpeedAEAD(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)406 static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
407                       size_t ad_len, const std::string &selected) {
408   if (!selected.empty() && name.find(selected) == std::string::npos) {
409     return true;
410   }
411 
412   for (size_t chunk_len : g_chunk_lengths) {
413     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) {
414       return false;
415     }
416   }
417   return true;
418 }
419 
SpeedAEADOpen(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)420 static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
421                           size_t ad_len, const std::string &selected) {
422   if (!selected.empty() && name.find(selected) == std::string::npos) {
423     return true;
424   }
425 
426   for (size_t chunk_len : g_chunk_lengths) {
427     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) {
428       return false;
429     }
430   }
431 
432   return true;
433 }
434 
SpeedHashChunk(const EVP_MD * md,std::string name,size_t chunk_len)435 static bool SpeedHashChunk(const EVP_MD *md, std::string name,
436                            size_t chunk_len) {
437   bssl::ScopedEVP_MD_CTX ctx;
438   uint8_t scratch[8192];
439 
440   if (chunk_len > sizeof(scratch)) {
441     return false;
442   }
443 
444   name += ChunkLenSuffix(chunk_len);
445   TimeResults results;
446   if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool {
447         uint8_t digest[EVP_MAX_MD_SIZE];
448         unsigned int md_len;
449 
450         return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) &&
451                EVP_DigestUpdate(ctx.get(), scratch, chunk_len) &&
452                EVP_DigestFinal_ex(ctx.get(), digest, &md_len);
453       })) {
454     fprintf(stderr, "EVP_DigestInit_ex failed.\n");
455     ERR_print_errors_fp(stderr);
456     return false;
457   }
458 
459   results.PrintWithBytes(name, chunk_len);
460   return true;
461 }
462 
SpeedHash(const EVP_MD * md,const std::string & name,const std::string & selected)463 static bool SpeedHash(const EVP_MD *md, const std::string &name,
464                       const std::string &selected) {
465   if (!selected.empty() && name.find(selected) == std::string::npos) {
466     return true;
467   }
468 
469   for (size_t chunk_len : g_chunk_lengths) {
470     if (!SpeedHashChunk(md, name, chunk_len)) {
471       return false;
472     }
473   }
474 
475   return true;
476 }
477 
SpeedRandomChunk(std::string name,size_t chunk_len)478 static bool SpeedRandomChunk(std::string name, size_t chunk_len) {
479   uint8_t scratch[8192];
480 
481   if (chunk_len > sizeof(scratch)) {
482     return false;
483   }
484 
485   name += ChunkLenSuffix(chunk_len);
486   TimeResults results;
487   if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
488         RAND_bytes(scratch, chunk_len);
489         return true;
490       })) {
491     return false;
492   }
493 
494   results.PrintWithBytes(name, chunk_len);
495   return true;
496 }
497 
SpeedRandom(const std::string & selected)498 static bool SpeedRandom(const std::string &selected) {
499   if (!selected.empty() && selected != "RNG") {
500     return true;
501   }
502 
503   for (size_t chunk_len : g_chunk_lengths) {
504     if (!SpeedRandomChunk("RNG", chunk_len)) {
505       return false;
506     }
507   }
508 
509   return true;
510 }
511 
SpeedECDHCurve(const std::string & name,int nid,const std::string & selected)512 static bool SpeedECDHCurve(const std::string &name, int nid,
513                            const std::string &selected) {
514   if (!selected.empty() && name.find(selected) == std::string::npos) {
515     return true;
516   }
517 
518   bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid));
519   if (!peer_key ||
520       !EC_KEY_generate_key(peer_key.get())) {
521     return false;
522   }
523 
524   size_t peer_value_len = EC_POINT_point2oct(
525       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
526       POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr);
527   if (peer_value_len == 0) {
528     return false;
529   }
530   std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]);
531   peer_value_len = EC_POINT_point2oct(
532       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
533       POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr);
534   if (peer_value_len == 0) {
535     return false;
536   }
537 
538   TimeResults results;
539   if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool {
540         bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
541         if (!key ||
542             !EC_KEY_generate_key(key.get())) {
543           return false;
544         }
545         const EC_GROUP *const group = EC_KEY_get0_group(key.get());
546         bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
547         bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group));
548         bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
549 
550         bssl::UniquePtr<BIGNUM> x(BN_new());
551         bssl::UniquePtr<BIGNUM> y(BN_new());
552 
553         if (!point || !peer_point || !ctx || !x || !y ||
554             !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(),
555                                 peer_value_len, ctx.get()) ||
556             !EC_POINT_mul(group, point.get(), NULL, peer_point.get(),
557                           EC_KEY_get0_private_key(key.get()), ctx.get()) ||
558             !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
559                                                  y.get(), ctx.get())) {
560           return false;
561         }
562 
563         return true;
564       })) {
565     return false;
566   }
567 
568   results.Print(name);
569   return true;
570 }
571 
SpeedECDSACurve(const std::string & name,int nid,const std::string & selected)572 static bool SpeedECDSACurve(const std::string &name, int nid,
573                             const std::string &selected) {
574   if (!selected.empty() && name.find(selected) == std::string::npos) {
575     return true;
576   }
577 
578   bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
579   if (!key ||
580       !EC_KEY_generate_key(key.get())) {
581     return false;
582   }
583 
584   uint8_t signature[256];
585   if (ECDSA_size(key.get()) > sizeof(signature)) {
586     return false;
587   }
588   uint8_t digest[20];
589   OPENSSL_memset(digest, 42, sizeof(digest));
590   unsigned sig_len;
591 
592   TimeResults results;
593   if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
594         return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
595                           key.get()) == 1;
596       })) {
597     return false;
598   }
599 
600   results.Print(name + " signing");
601 
602   if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
603         return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
604                             key.get()) == 1;
605       })) {
606     return false;
607   }
608 
609   results.Print(name + " verify");
610 
611   return true;
612 }
613 
SpeedECDH(const std::string & selected)614 static bool SpeedECDH(const std::string &selected) {
615   return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
616          SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
617          SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
618          SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
619 }
620 
SpeedECDSA(const std::string & selected)621 static bool SpeedECDSA(const std::string &selected) {
622   return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
623          SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
624          SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
625          SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
626 }
627 
Speed25519(const std::string & selected)628 static bool Speed25519(const std::string &selected) {
629   if (!selected.empty() && selected.find("25519") == std::string::npos) {
630     return true;
631   }
632 
633   TimeResults results;
634 
635   uint8_t public_key[32], private_key[64];
636 
637   if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
638         ED25519_keypair(public_key, private_key);
639         return true;
640       })) {
641     return false;
642   }
643 
644   results.Print("Ed25519 key generation");
645 
646   static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
647   uint8_t signature[64];
648 
649   if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
650         return ED25519_sign(signature, kMessage, sizeof(kMessage),
651                             private_key) == 1;
652       })) {
653     return false;
654   }
655 
656   results.Print("Ed25519 signing");
657 
658   if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
659         return ED25519_verify(kMessage, sizeof(kMessage), signature,
660                               public_key) == 1;
661       })) {
662     fprintf(stderr, "Ed25519 verify failed.\n");
663     return false;
664   }
665 
666   results.Print("Ed25519 verify");
667 
668   if (!TimeFunction(&results, []() -> bool {
669         uint8_t out[32], in[32];
670         OPENSSL_memset(in, 0, sizeof(in));
671         X25519_public_from_private(out, in);
672         return true;
673       })) {
674     fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
675     return false;
676   }
677 
678   results.Print("Curve25519 base-point multiplication");
679 
680   if (!TimeFunction(&results, []() -> bool {
681         uint8_t out[32], in1[32], in2[32];
682         OPENSSL_memset(in1, 0, sizeof(in1));
683         OPENSSL_memset(in2, 0, sizeof(in2));
684         in1[0] = 1;
685         in2[0] = 9;
686         return X25519(out, in1, in2) == 1;
687       })) {
688     fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
689     return false;
690   }
691 
692   results.Print("Curve25519 arbitrary point multiplication");
693 
694   return true;
695 }
696 
SpeedSPAKE2(const std::string & selected)697 static bool SpeedSPAKE2(const std::string &selected) {
698   if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
699     return true;
700   }
701 
702   TimeResults results;
703 
704   static const uint8_t kAliceName[] = {'A'};
705   static const uint8_t kBobName[] = {'B'};
706   static const uint8_t kPassword[] = "password";
707   bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
708                                     kAliceName, sizeof(kAliceName), kBobName,
709                                     sizeof(kBobName)));
710   uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
711   size_t alice_msg_len;
712 
713   if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
714                            sizeof(alice_msg),
715                            kPassword, sizeof(kPassword))) {
716     fprintf(stderr, "SPAKE2_generate_msg failed.\n");
717     return false;
718   }
719 
720   if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
721         bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
722                                         kBobName, sizeof(kBobName), kAliceName,
723                                         sizeof(kAliceName)));
724         uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
725         size_t bob_msg_len, bob_key_len;
726         if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
727                                  sizeof(bob_msg), kPassword,
728                                  sizeof(kPassword)) ||
729             !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
730                                 sizeof(bob_key), alice_msg, alice_msg_len)) {
731           return false;
732         }
733 
734         return true;
735       })) {
736     fprintf(stderr, "SPAKE2 failed.\n");
737   }
738 
739   results.Print("SPAKE2 over Ed25519");
740 
741   return true;
742 }
743 
SpeedScrypt(const std::string & selected)744 static bool SpeedScrypt(const std::string &selected) {
745   if (!selected.empty() && selected.find("scrypt") == std::string::npos) {
746     return true;
747   }
748 
749   TimeResults results;
750 
751   static const char kPassword[] = "password";
752   static const uint8_t kSalt[] = "NaCl";
753 
754   if (!TimeFunction(&results, [&]() -> bool {
755         uint8_t out[64];
756         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
757                                 sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */,
758                                 out, sizeof(out));
759       })) {
760     fprintf(stderr, "scrypt failed.\n");
761     return false;
762   }
763   results.Print("scrypt (N = 1024, r = 8, p = 16)");
764 
765   if (!TimeFunction(&results, [&]() -> bool {
766         uint8_t out[64];
767         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
768                                 sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */,
769                                 out, sizeof(out));
770       })) {
771     fprintf(stderr, "scrypt failed.\n");
772     return false;
773   }
774   results.Print("scrypt (N = 16384, r = 8, p = 1)");
775 
776   return true;
777 }
778 
SpeedHRSS(const std::string & selected)779 static bool SpeedHRSS(const std::string &selected) {
780   if (!selected.empty() && selected != "HRSS") {
781     return true;
782   }
783 
784   TimeResults results;
785 
786   if (!TimeFunction(&results, []() -> bool {
787     struct HRSS_public_key pub;
788     struct HRSS_private_key priv;
789     uint8_t entropy[HRSS_GENERATE_KEY_BYTES];
790     RAND_bytes(entropy, sizeof(entropy));
791     HRSS_generate_key(&pub, &priv, entropy);
792     return true;
793   })) {
794     fprintf(stderr, "Failed to time HRSS_generate_key.\n");
795     return false;
796   }
797 
798   results.Print("HRSS generate");
799 
800   struct HRSS_public_key pub;
801   struct HRSS_private_key priv;
802   uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES];
803   RAND_bytes(key_entropy, sizeof(key_entropy));
804   HRSS_generate_key(&pub, &priv, key_entropy);
805 
806   uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
807   if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool {
808     uint8_t entropy[HRSS_ENCAP_BYTES];
809     uint8_t shared_key[HRSS_KEY_BYTES];
810     RAND_bytes(entropy, sizeof(entropy));
811     HRSS_encap(ciphertext, shared_key, &pub, entropy);
812     return true;
813   })) {
814     fprintf(stderr, "Failed to time HRSS_encap.\n");
815     return false;
816   }
817 
818   results.Print("HRSS encap");
819 
820   if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool {
821     uint8_t shared_key[HRSS_KEY_BYTES];
822     HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext));
823     return true;
824   })) {
825     fprintf(stderr, "Failed to time HRSS_encap.\n");
826     return false;
827   }
828 
829   results.Print("HRSS decap");
830 
831   return true;
832 }
833 
834 static const struct argument kArguments[] = {
835     {
836         "-filter",
837         kOptionalArgument,
838         "A filter on the speed tests to run",
839     },
840     {
841         "-timeout",
842         kOptionalArgument,
843         "The number of seconds to run each test for (default is 1)",
844     },
845     {
846         "-chunks",
847         kOptionalArgument,
848         "A comma-separated list of input sizes to run tests at (default is "
849         "16,256,1350,8192,16384)",
850     },
851     {
852         "",
853         kOptionalArgument,
854         "",
855     },
856 };
857 
Speed(const std::vector<std::string> & args)858 bool Speed(const std::vector<std::string> &args) {
859   std::map<std::string, std::string> args_map;
860   if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
861     PrintUsage(kArguments);
862     return false;
863   }
864 
865   std::string selected;
866   if (args_map.count("-filter") != 0) {
867     selected = args_map["-filter"];
868   }
869 
870   if (args_map.count("-timeout") != 0) {
871     g_timeout_seconds = atoi(args_map["-timeout"].c_str());
872   }
873 
874   if (args_map.count("-chunks") != 0) {
875     g_chunk_lengths.clear();
876     const char *start = args_map["-chunks"].data();
877     const char *end = start + args_map["-chunks"].size();
878     while (start != end) {
879       errno = 0;
880       char *ptr;
881       unsigned long long val = strtoull(start, &ptr, 10);
882       if (ptr == start /* no numeric characters found */ ||
883           errno == ERANGE /* overflow */ ||
884           static_cast<size_t>(val) != val) {
885         fprintf(stderr, "Error parsing -chunks argument\n");
886         return false;
887       }
888       g_chunk_lengths.push_back(static_cast<size_t>(val));
889       start = ptr;
890       if (start != end) {
891         if (*start != ',') {
892           fprintf(stderr, "Error parsing -chunks argument\n");
893           return false;
894         }
895         start++;
896       }
897     }
898   }
899 
900   // kTLSADLen is the number of bytes of additional data that TLS passes to
901   // AEADs.
902   static const size_t kTLSADLen = 13;
903   // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
904   // These are AEADs that weren't originally defined as AEADs, but which we use
905   // via the AEAD interface. In order for that to work, they have some TLS
906   // knowledge in them and construct a couple of the AD bytes internally.
907   static const size_t kLegacyADLen = kTLSADLen - 2;
908 
909   if (!SpeedRSA(selected) ||
910       !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
911       !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
912       !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
913                  selected) ||
914       !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
915                  kLegacyADLen, selected) ||
916       !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
917                  kLegacyADLen, selected) ||
918       !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
919                  kLegacyADLen, selected) ||
920       !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
921                      kLegacyADLen, selected) ||
922       !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
923                      kLegacyADLen, selected) ||
924       !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
925                  selected) ||
926       !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
927                  selected) ||
928       !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
929                      selected) ||
930       !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
931                      selected) ||
932       !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth",
933                  kTLSADLen, selected) ||
934       !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
935       !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
936       !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
937       !SpeedRandom(selected) ||
938       !SpeedECDH(selected) ||
939       !SpeedECDSA(selected) ||
940       !Speed25519(selected) ||
941       !SpeedSPAKE2(selected) ||
942       !SpeedScrypt(selected) ||
943       !SpeedRSAKeyGen(selected) ||
944       !SpeedHRSS(selected)) {
945     return false;
946   }
947 
948   return true;
949 }
950