1 //===-- tsan_platform_linux.cc --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Linux- and FreeBSD-specific code.
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "sanitizer_common/sanitizer_platform.h"
17 #if SANITIZER_LINUX || SANITIZER_FREEBSD
18 
19 #include "sanitizer_common/sanitizer_common.h"
20 #include "sanitizer_common/sanitizer_libc.h"
21 #include "sanitizer_common/sanitizer_linux.h"
22 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
23 #include "sanitizer_common/sanitizer_posix.h"
24 #include "sanitizer_common/sanitizer_procmaps.h"
25 #include "sanitizer_common/sanitizer_stoptheworld.h"
26 #include "sanitizer_common/sanitizer_stackdepot.h"
27 #include "tsan_platform.h"
28 #include "tsan_rtl.h"
29 #include "tsan_flags.h"
30 
31 #include <fcntl.h>
32 #include <pthread.h>
33 #include <signal.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <stdarg.h>
38 #include <sys/mman.h>
39 #if SANITIZER_LINUX
40 #include <sys/personality.h>
41 #endif
42 #include <sys/syscall.h>
43 #include <sys/socket.h>
44 #include <sys/time.h>
45 #include <sys/types.h>
46 #include <sys/resource.h>
47 #include <sys/stat.h>
48 #include <unistd.h>
49 #include <errno.h>
50 #include <sched.h>
51 #include <dlfcn.h>
52 #if SANITIZER_LINUX
53 #define __need_res_state
54 #include <resolv.h>
55 #endif
56 
57 #ifdef sa_handler
58 # undef sa_handler
59 #endif
60 
61 #ifdef sa_sigaction
62 # undef sa_sigaction
63 #endif
64 
65 #if SANITIZER_FREEBSD
66 extern "C" void *__libc_stack_end;
67 void *__libc_stack_end = 0;
68 #endif
69 
70 namespace __tsan {
71 
72 #ifdef TSAN_RUNTIME_VMA
73 // Runtime detected VMA size.
74 uptr vmaSize;
75 #endif
76 
77 enum {
78   MemTotal  = 0,
79   MemShadow = 1,
80   MemMeta   = 2,
81   MemFile   = 3,
82   MemMmap   = 4,
83   MemTrace  = 5,
84   MemHeap   = 6,
85   MemOther  = 7,
86   MemCount  = 8,
87 };
88 
FillProfileCallback(uptr p,uptr rss,bool file,uptr * mem,uptr stats_size)89 void FillProfileCallback(uptr p, uptr rss, bool file,
90                          uptr *mem, uptr stats_size) {
91   mem[MemTotal] += rss;
92   if (p >= ShadowBeg() && p < ShadowEnd())
93     mem[MemShadow] += rss;
94   else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
95     mem[MemMeta] += rss;
96 #ifndef SANITIZER_GO
97   else if (p >= HeapMemBeg() && p < HeapMemEnd())
98     mem[MemHeap] += rss;
99   else if (p >= LoAppMemBeg() && p < LoAppMemEnd())
100     mem[file ? MemFile : MemMmap] += rss;
101   else if (p >= HiAppMemBeg() && p < HiAppMemEnd())
102     mem[file ? MemFile : MemMmap] += rss;
103 #else
104   else if (p >= AppMemBeg() && p < AppMemEnd())
105     mem[file ? MemFile : MemMmap] += rss;
106 #endif
107   else if (p >= TraceMemBeg() && p < TraceMemEnd())
108     mem[MemTrace] += rss;
109   else
110     mem[MemOther] += rss;
111 }
112 
WriteMemoryProfile(char * buf,uptr buf_size,uptr nthread,uptr nlive)113 void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
114   uptr mem[MemCount];
115   internal_memset(mem, 0, sizeof(mem[0]) * MemCount);
116   __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
117   StackDepotStats *stacks = StackDepotGetStats();
118   internal_snprintf(buf, buf_size,
119       "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
120       " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n",
121       mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
122       mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
123       mem[MemHeap] >> 20, mem[MemOther] >> 20,
124       stacks->allocated >> 20, stacks->n_uniq_ids,
125       nlive, nthread);
126 }
127 
128 #if SANITIZER_LINUX
FlushShadowMemoryCallback(const SuspendedThreadsList & suspended_threads_list,void * argument)129 void FlushShadowMemoryCallback(
130     const SuspendedThreadsList &suspended_threads_list,
131     void *argument) {
132   FlushUnneededShadowMemory(ShadowBeg(), ShadowEnd() - ShadowBeg());
133 }
134 #endif
135 
FlushShadowMemory()136 void FlushShadowMemory() {
137 #if SANITIZER_LINUX
138   StopTheWorld(FlushShadowMemoryCallback, 0);
139 #endif
140 }
141 
142 #ifndef SANITIZER_GO
143 // Mark shadow for .rodata sections with the special kShadowRodata marker.
144 // Accesses to .rodata can't race, so this saves time, memory and trace space.
MapRodata()145 static void MapRodata() {
146   // First create temp file.
147   const char *tmpdir = GetEnv("TMPDIR");
148   if (tmpdir == 0)
149     tmpdir = GetEnv("TEST_TMPDIR");
150 #ifdef P_tmpdir
151   if (tmpdir == 0)
152     tmpdir = P_tmpdir;
153 #endif
154   if (tmpdir == 0)
155     return;
156   char name[256];
157   internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
158                     tmpdir, (int)internal_getpid());
159   uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
160   if (internal_iserror(openrv))
161     return;
162   internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
163   fd_t fd = openrv;
164   // Fill the file with kShadowRodata.
165   const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
166   InternalScopedBuffer<u64> marker(kMarkerSize);
167   // volatile to prevent insertion of memset
168   for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
169     *p = kShadowRodata;
170   internal_write(fd, marker.data(), marker.size());
171   // Map the file into memory.
172   uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
173                             MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
174   if (internal_iserror(page)) {
175     internal_close(fd);
176     return;
177   }
178   // Map the file into shadow of .rodata sections.
179   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
180   uptr start, end, offset, prot;
181   // Reusing the buffer 'name'.
182   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
183     if (name[0] != 0 && name[0] != '['
184         && (prot & MemoryMappingLayout::kProtectionRead)
185         && (prot & MemoryMappingLayout::kProtectionExecute)
186         && !(prot & MemoryMappingLayout::kProtectionWrite)
187         && IsAppMem(start)) {
188       // Assume it's .rodata
189       char *shadow_start = (char*)MemToShadow(start);
190       char *shadow_end = (char*)MemToShadow(end);
191       for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
192         internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
193                       PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
194       }
195     }
196   }
197   internal_close(fd);
198 }
199 
InitializeShadowMemoryPlatform()200 void InitializeShadowMemoryPlatform() {
201   MapRodata();
202 }
203 
204 #endif  // #ifndef SANITIZER_GO
205 
InitializePlatformEarly()206 void InitializePlatformEarly() {
207 #ifdef TSAN_RUNTIME_VMA
208   vmaSize =
209     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
210 #if defined(__aarch64__)
211   if (vmaSize != 39 && vmaSize != 42) {
212     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
213     Printf("FATAL: Found %d - Supported 39 and 42\n", vmaSize);
214     Die();
215   }
216 #elif defined(__powerpc64__)
217   if (vmaSize != 44 && vmaSize != 46) {
218     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
219     Printf("FATAL: Found %d - Supported 44 and 46\n", vmaSize);
220     Die();
221   }
222 #endif
223 #endif
224 }
225 
InitializePlatform()226 void InitializePlatform() {
227   DisableCoreDumperIfNecessary();
228 
229   // Go maps shadow memory lazily and works fine with limited address space.
230   // Unlimited stack is not a problem as well, because the executable
231   // is not compiled with -pie.
232   if (kCppMode) {
233     bool reexec = false;
234     // TSan doesn't play well with unlimited stack size (as stack
235     // overlaps with shadow memory). If we detect unlimited stack size,
236     // we re-exec the program with limited stack size as a best effort.
237     if (StackSizeIsUnlimited()) {
238       const uptr kMaxStackSize = 32 * 1024 * 1024;
239       VReport(1, "Program is run with unlimited stack size, which wouldn't "
240                  "work with ThreadSanitizer.\n"
241                  "Re-execing with stack size limited to %zd bytes.\n",
242               kMaxStackSize);
243       SetStackSizeLimitInBytes(kMaxStackSize);
244       reexec = true;
245     }
246 
247     if (!AddressSpaceIsUnlimited()) {
248       Report("WARNING: Program is run with limited virtual address space,"
249              " which wouldn't work with ThreadSanitizer.\n");
250       Report("Re-execing with unlimited virtual address space.\n");
251       SetAddressSpaceUnlimited();
252       reexec = true;
253     }
254 #if SANITIZER_LINUX && defined(__aarch64__)
255     // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
256     // linux kernel, the random gap between stack and mapped area is increased
257     // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
258     // this big range, we should disable randomized virtual space on aarch64.
259     int old_personality = personality(0xffffffff);
260     if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
261       VReport(1, "WARNING: Program is run with randomized virtual address "
262               "space, which wouldn't work with ThreadSanitizer.\n"
263               "Re-execing with fixed virtual address space.\n");
264       CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
265       reexec = true;
266     }
267 #endif
268     if (reexec)
269       ReExec();
270   }
271 
272 #ifndef SANITIZER_GO
273   CheckAndProtect();
274   InitTlsSize();
275 #endif
276 }
277 
278 #ifndef SANITIZER_GO
279 // Extract file descriptors passed to glibc internal __res_iclose function.
280 // This is required to properly "close" the fds, because we do not see internal
281 // closes within glibc. The code is a pure hack.
ExtractResolvFDs(void * state,int * fds,int nfd)282 int ExtractResolvFDs(void *state, int *fds, int nfd) {
283 #if SANITIZER_LINUX && !SANITIZER_ANDROID
284   int cnt = 0;
285   __res_state *statp = (__res_state*)state;
286   for (int i = 0; i < MAXNS && cnt < nfd; i++) {
287     if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
288       fds[cnt++] = statp->_u._ext.nssocks[i];
289   }
290   return cnt;
291 #else
292   return 0;
293 #endif
294 }
295 
296 // Extract file descriptors passed via UNIX domain sockets.
297 // This is requried to properly handle "open" of these fds.
298 // see 'man recvmsg' and 'man 3 cmsg'.
ExtractRecvmsgFDs(void * msgp,int * fds,int nfd)299 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
300   int res = 0;
301   msghdr *msg = (msghdr*)msgp;
302   struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
303   for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
304     if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
305       continue;
306     int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
307     for (int i = 0; i < n; i++) {
308       fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
309       if (res == nfd)
310         return res;
311     }
312   }
313   return res;
314 }
315 
316 // Note: this function runs with async signals enabled,
317 // so it must not touch any tsan state.
call_pthread_cancel_with_cleanup(int (* fn)(void * c,void * m,void * abstime),void * c,void * m,void * abstime,void (* cleanup)(void * arg),void * arg)318 int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
319     void *abstime), void *c, void *m, void *abstime,
320     void(*cleanup)(void *arg), void *arg) {
321   // pthread_cleanup_push/pop are hardcore macros mess.
322   // We can't intercept nor call them w/o including pthread.h.
323   int res;
324   pthread_cleanup_push(cleanup, arg);
325   res = fn(c, m, abstime);
326   pthread_cleanup_pop(0);
327   return res;
328 }
329 #endif
330 
331 #ifndef SANITIZER_GO
ReplaceSystemMalloc()332 void ReplaceSystemMalloc() { }
333 #endif
334 
335 #ifndef SANITIZER_GO
336 #if SANITIZER_ANDROID
337 
338 #if defined(__aarch64__)
339 # define __get_tls() \
340     ({ void** __val; __asm__("mrs %0, tpidr_el0" : "=r"(__val)); __val; })
341 #elif defined(__x86_64__)
342 # define __get_tls() \
343     ({ void** __val; __asm__("mov %%fs:0, %0" : "=r"(__val)); __val; })
344 #else
345 #error unsupported architecture
346 #endif
347 
348 // On Android, __thread is not supported. So we store the pointer to ThreadState
349 // in TLS_SLOT_TSAN, which is the tls slot allocated by Android bionic for tsan.
350 static const int TLS_SLOT_TSAN = 8;
351 // On Android, one thread can call intercepted functions after
352 // DestroyThreadState(), so add a fake thread state for "dead" threads.
353 static ThreadState *dead_thread_state = nullptr;
354 
cur_thread()355 ThreadState *cur_thread() {
356   ThreadState* thr = (ThreadState*)__get_tls()[TLS_SLOT_TSAN];
357   if (thr == nullptr) {
358     __sanitizer_sigset_t emptyset;
359     internal_sigfillset(&emptyset);
360     __sanitizer_sigset_t oldset;
361     CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
362     thr = reinterpret_cast<ThreadState*>(__get_tls()[TLS_SLOT_TSAN]);
363     if (thr == nullptr) {
364       thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
365                                                      "ThreadState"));
366       __get_tls()[TLS_SLOT_TSAN] = thr;
367       if (dead_thread_state == nullptr) {
368         dead_thread_state = reinterpret_cast<ThreadState*>(
369             MmapOrDie(sizeof(ThreadState), "ThreadState"));
370         dead_thread_state->fast_state.SetIgnoreBit();
371         dead_thread_state->ignore_interceptors = 1;
372         dead_thread_state->is_dead = true;
373         *const_cast<int*>(&dead_thread_state->tid) = -1;
374         CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
375                                       PROT_READ));
376       }
377     }
378     CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
379   }
380   return thr;
381 }
382 
cur_thread_finalize()383 void cur_thread_finalize() {
384   __sanitizer_sigset_t emptyset;
385   internal_sigfillset(&emptyset);
386   __sanitizer_sigset_t oldset;
387   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
388   ThreadState* thr = (ThreadState*)__get_tls()[TLS_SLOT_TSAN];
389   if (thr != dead_thread_state) {
390     __get_tls()[TLS_SLOT_TSAN] = dead_thread_state;
391     UnmapOrDie(thr, sizeof(ThreadState));
392   }
393   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
394 }
395 #endif  // SANITIZER_ANDROID
396 #endif  // ifndef SANITIZER_GO
397 
398 }  // namespace __tsan
399 
400 #endif  // SANITIZER_LINUX || SANITIZER_FREEBSD
401