1 //===-- tsan_sync.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_placement_new.h"
14 #include "tsan_sync.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 
18 namespace __tsan {
19 
20 void DDMutexInit(ThreadState *thr, uptr pc, SyncVar *s);
21 
SyncVar()22 SyncVar::SyncVar()
23     : mtx(MutexTypeSyncVar, StatMtxSyncVar) {
24   Reset(0);
25 }
26 
Init(ThreadState * thr,uptr pc,uptr addr,u64 uid)27 void SyncVar::Init(ThreadState *thr, uptr pc, uptr addr, u64 uid) {
28   this->addr = addr;
29   this->uid = uid;
30   this->next = 0;
31 
32   creation_stack_id = 0;
33   if (kCppMode)  // Go does not use them
34     creation_stack_id = CurrentStackId(thr, pc);
35   if (common_flags()->detect_deadlocks)
36     DDMutexInit(thr, pc, this);
37 }
38 
Reset(Processor * proc)39 void SyncVar::Reset(Processor *proc) {
40   uid = 0;
41   creation_stack_id = 0;
42   owner_tid = kInvalidTid;
43   last_lock = 0;
44   recursion = 0;
45   is_rw = 0;
46   is_recursive = 0;
47   is_broken = 0;
48   is_linker_init = 0;
49 
50   if (proc == 0) {
51     CHECK_EQ(clock.size(), 0);
52     CHECK_EQ(read_clock.size(), 0);
53   } else {
54     clock.Reset(&proc->clock_cache);
55     read_clock.Reset(&proc->clock_cache);
56   }
57 }
58 
MetaMap()59 MetaMap::MetaMap() {
60   atomic_store(&uid_gen_, 0, memory_order_relaxed);
61 }
62 
AllocBlock(ThreadState * thr,uptr pc,uptr p,uptr sz)63 void MetaMap::AllocBlock(ThreadState *thr, uptr pc, uptr p, uptr sz) {
64   u32 idx = block_alloc_.Alloc(&thr->proc()->block_cache);
65   MBlock *b = block_alloc_.Map(idx);
66   b->siz = sz;
67   b->tid = thr->tid;
68   b->stk = CurrentStackId(thr, pc);
69   u32 *meta = MemToMeta(p);
70   DCHECK_EQ(*meta, 0);
71   *meta = idx | kFlagBlock;
72 }
73 
FreeBlock(Processor * proc,uptr p)74 uptr MetaMap::FreeBlock(Processor *proc, uptr p) {
75   MBlock* b = GetBlock(p);
76   if (b == 0)
77     return 0;
78   uptr sz = RoundUpTo(b->siz, kMetaShadowCell);
79   FreeRange(proc, p, sz);
80   return sz;
81 }
82 
FreeRange(Processor * proc,uptr p,uptr sz)83 bool MetaMap::FreeRange(Processor *proc, uptr p, uptr sz) {
84   bool has_something = false;
85   u32 *meta = MemToMeta(p);
86   u32 *end = MemToMeta(p + sz);
87   if (end == meta)
88     end++;
89   for (; meta < end; meta++) {
90     u32 idx = *meta;
91     if (idx == 0) {
92       // Note: don't write to meta in this case -- the block can be huge.
93       continue;
94     }
95     *meta = 0;
96     has_something = true;
97     while (idx != 0) {
98       if (idx & kFlagBlock) {
99         block_alloc_.Free(&proc->block_cache, idx & ~kFlagMask);
100         break;
101       } else if (idx & kFlagSync) {
102         DCHECK(idx & kFlagSync);
103         SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
104         u32 next = s->next;
105         s->Reset(proc);
106         sync_alloc_.Free(&proc->sync_cache, idx & ~kFlagMask);
107         idx = next;
108       } else {
109         CHECK(0);
110       }
111     }
112   }
113   return has_something;
114 }
115 
116 // ResetRange removes all meta objects from the range.
117 // It is called for large mmap-ed regions. The function is best-effort wrt
118 // freeing of meta objects, because we don't want to page in the whole range
119 // which can be huge. The function probes pages one-by-one until it finds a page
120 // without meta objects, at this point it stops freeing meta objects. Because
121 // thread stacks grow top-down, we do the same starting from end as well.
ResetRange(Processor * proc,uptr p,uptr sz)122 void MetaMap::ResetRange(Processor *proc, uptr p, uptr sz) {
123   if (kGoMode) {
124     // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
125     // so we do the optimization only for C/C++.
126     FreeRange(proc, p, sz);
127     return;
128   }
129   const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
130   const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
131   if (sz <= 4 * kPageSize) {
132     // If the range is small, just do the normal free procedure.
133     FreeRange(proc, p, sz);
134     return;
135   }
136   // First, round both ends of the range to page size.
137   uptr diff = RoundUp(p, kPageSize) - p;
138   if (diff != 0) {
139     FreeRange(proc, p, diff);
140     p += diff;
141     sz -= diff;
142   }
143   diff = p + sz - RoundDown(p + sz, kPageSize);
144   if (diff != 0) {
145     FreeRange(proc, p + sz - diff, diff);
146     sz -= diff;
147   }
148   // Now we must have a non-empty page-aligned range.
149   CHECK_GT(sz, 0);
150   CHECK_EQ(p, RoundUp(p, kPageSize));
151   CHECK_EQ(sz, RoundUp(sz, kPageSize));
152   const uptr p0 = p;
153   const uptr sz0 = sz;
154   // Probe start of the range.
155   for (uptr checked = 0; sz > 0; checked += kPageSize) {
156     bool has_something = FreeRange(proc, p, kPageSize);
157     p += kPageSize;
158     sz -= kPageSize;
159     if (!has_something && checked > (128 << 10))
160       break;
161   }
162   // Probe end of the range.
163   for (uptr checked = 0; sz > 0; checked += kPageSize) {
164     bool has_something = FreeRange(proc, p + sz - kPageSize, kPageSize);
165     sz -= kPageSize;
166     // Stacks grow down, so sync object are most likely at the end of the region
167     // (if it is a stack). The very end of the stack is TLS and tsan increases
168     // TLS by at least 256K, so check at least 512K.
169     if (!has_something && checked > (512 << 10))
170       break;
171   }
172   // Finally, page out the whole range (including the parts that we've just
173   // freed). Note: we can't simply madvise, because we need to leave a zeroed
174   // range (otherwise __tsan_java_move can crash if it encounters a left-over
175   // meta objects in java heap).
176   uptr metap = (uptr)MemToMeta(p0);
177   uptr metasz = sz0 / kMetaRatio;
178   UnmapOrDie((void*)metap, metasz);
179   MmapFixedNoReserve(metap, metasz);
180 }
181 
GetBlock(uptr p)182 MBlock* MetaMap::GetBlock(uptr p) {
183   u32 *meta = MemToMeta(p);
184   u32 idx = *meta;
185   for (;;) {
186     if (idx == 0)
187       return 0;
188     if (idx & kFlagBlock)
189       return block_alloc_.Map(idx & ~kFlagMask);
190     DCHECK(idx & kFlagSync);
191     SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
192     idx = s->next;
193   }
194 }
195 
GetOrCreateAndLock(ThreadState * thr,uptr pc,uptr addr,bool write_lock)196 SyncVar* MetaMap::GetOrCreateAndLock(ThreadState *thr, uptr pc,
197                               uptr addr, bool write_lock) {
198   return GetAndLock(thr, pc, addr, write_lock, true);
199 }
200 
GetIfExistsAndLock(uptr addr,bool write_lock)201 SyncVar* MetaMap::GetIfExistsAndLock(uptr addr, bool write_lock) {
202   return GetAndLock(0, 0, addr, write_lock, false);
203 }
204 
GetAndLock(ThreadState * thr,uptr pc,uptr addr,bool write_lock,bool create)205 SyncVar* MetaMap::GetAndLock(ThreadState *thr, uptr pc,
206                              uptr addr, bool write_lock, bool create) {
207   u32 *meta = MemToMeta(addr);
208   u32 idx0 = *meta;
209   u32 myidx = 0;
210   SyncVar *mys = 0;
211   for (;;) {
212     u32 idx = idx0;
213     for (;;) {
214       if (idx == 0)
215         break;
216       if (idx & kFlagBlock)
217         break;
218       DCHECK(idx & kFlagSync);
219       SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
220       if (s->addr == addr) {
221         if (myidx != 0) {
222           mys->Reset(thr->proc());
223           sync_alloc_.Free(&thr->proc()->sync_cache, myidx);
224         }
225         if (write_lock)
226           s->mtx.Lock();
227         else
228           s->mtx.ReadLock();
229         return s;
230       }
231       idx = s->next;
232     }
233     if (!create)
234       return 0;
235     if (*meta != idx0) {
236       idx0 = *meta;
237       continue;
238     }
239 
240     if (myidx == 0) {
241       const u64 uid = atomic_fetch_add(&uid_gen_, 1, memory_order_relaxed);
242       myidx = sync_alloc_.Alloc(&thr->proc()->sync_cache);
243       mys = sync_alloc_.Map(myidx);
244       mys->Init(thr, pc, addr, uid);
245     }
246     mys->next = idx0;
247     if (atomic_compare_exchange_strong((atomic_uint32_t*)meta, &idx0,
248         myidx | kFlagSync, memory_order_release)) {
249       if (write_lock)
250         mys->mtx.Lock();
251       else
252         mys->mtx.ReadLock();
253       return mys;
254     }
255   }
256 }
257 
MoveMemory(uptr src,uptr dst,uptr sz)258 void MetaMap::MoveMemory(uptr src, uptr dst, uptr sz) {
259   // src and dst can overlap,
260   // there are no concurrent accesses to the regions (e.g. stop-the-world).
261   CHECK_NE(src, dst);
262   CHECK_NE(sz, 0);
263   uptr diff = dst - src;
264   u32 *src_meta = MemToMeta(src);
265   u32 *dst_meta = MemToMeta(dst);
266   u32 *src_meta_end = MemToMeta(src + sz);
267   uptr inc = 1;
268   if (dst > src) {
269     src_meta = MemToMeta(src + sz) - 1;
270     dst_meta = MemToMeta(dst + sz) - 1;
271     src_meta_end = MemToMeta(src) - 1;
272     inc = -1;
273   }
274   for (; src_meta != src_meta_end; src_meta += inc, dst_meta += inc) {
275     CHECK_EQ(*dst_meta, 0);
276     u32 idx = *src_meta;
277     *src_meta = 0;
278     *dst_meta = idx;
279     // Patch the addresses in sync objects.
280     while (idx != 0) {
281       if (idx & kFlagBlock)
282         break;
283       CHECK(idx & kFlagSync);
284       SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
285       s->addr += diff;
286       idx = s->next;
287     }
288   }
289 }
290 
OnProcIdle(Processor * proc)291 void MetaMap::OnProcIdle(Processor *proc) {
292   block_alloc_.FlushCache(&proc->block_cache);
293   sync_alloc_.FlushCache(&proc->sync_cache);
294 }
295 
296 }  // namespace __tsan
297