1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIX_H
12 #define EIGEN_MATRIX_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
18 struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
19 {
20 private:
21   enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
22   typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
23   enum {
24       row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
25       is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
26       max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
27       default_alignment = compute_default_alignment<_Scalar,max_size>::value,
28       actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
29       required_alignment = unpacket_traits<PacketScalar>::alignment,
30       packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
31     };
32 
33 public:
34   typedef _Scalar Scalar;
35   typedef Dense StorageKind;
36   typedef Eigen::Index StorageIndex;
37   typedef MatrixXpr XprKind;
38   enum {
39     RowsAtCompileTime = _Rows,
40     ColsAtCompileTime = _Cols,
41     MaxRowsAtCompileTime = _MaxRows,
42     MaxColsAtCompileTime = _MaxCols,
43     Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
44     Options = _Options,
45     InnerStrideAtCompileTime = 1,
46     OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
47 
48     // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
49     EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit,
50     Alignment = actual_alignment
51   };
52 };
53 }
54 
55 /** \class Matrix
56   * \ingroup Core_Module
57   *
58   * \brief The matrix class, also used for vectors and row-vectors
59   *
60   * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
61   * Vectors are matrices with one column, and row-vectors are matrices with one row.
62   *
63   * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
64   *
65   * The first three template parameters are required:
66   * \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>.
67   *                 User defined scalar types are supported as well (see \ref user_defined_scalars "here").
68   * \tparam _Rows Number of rows, or \b Dynamic
69   * \tparam _Cols Number of columns, or \b Dynamic
70   *
71   * The remaining template parameters are optional -- in most cases you don't have to worry about them.
72   * \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either
73   *                 \b #AutoAlign or \b #DontAlign.
74   *                 The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
75   *                 for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
76   * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
77   * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
78   *
79   * Eigen provides a number of typedefs covering the usual cases. Here are some examples:
80   *
81   * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
82   * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
83   * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
84   *
85   * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
86   * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
87   *
88   * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, Dynamic>)
89   * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix<double, Dynamic, 3>)
90   *
91   * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
92   *
93   * You can access elements of vectors and matrices using normal subscripting:
94   *
95   * \code
96   * Eigen::VectorXd v(10);
97   * v[0] = 0.1;
98   * v[1] = 0.2;
99   * v(0) = 0.3;
100   * v(1) = 0.4;
101   *
102   * Eigen::MatrixXi m(10, 10);
103   * m(0, 1) = 1;
104   * m(0, 2) = 2;
105   * m(0, 3) = 3;
106   * \endcode
107   *
108   * This class can be extended with the help of the plugin mechanism described on the page
109   * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
110   *
111   * <i><b>Some notes:</b></i>
112   *
113   * <dl>
114   * <dt><b>\anchor dense Dense versus sparse:</b></dt>
115   * <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
116   *
117   * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
118   * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
119   *
120   * <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
121   * <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
122   * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
123   * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
124   *
125   * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
126   * variables, and the array of coefficients is allocated dynamically on the heap.
127   *
128   * Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
129   * If you want this behavior, see the Sparse module.</dd>
130   *
131   * <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
132   * <dd>In most cases, one just leaves these parameters to the default values.
133   * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
134   * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
135   * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
136   * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
137   * </dl>
138   *
139   * <i><b>ABI and storage layout</b></i>
140   *
141   * The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3.
142   * <table  class="manual">
143   * <tr><th>Matrix type</th><th>Equivalent C structure</th></tr>
144   * <tr><td>\code Matrix<T,Dynamic,Dynamic> \endcode</td><td>\code
145   * struct {
146   *   T *data;                  // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
147   *   Eigen::Index rows, cols;
148   *  };
149   * \endcode</td></tr>
150   * <tr class="alt"><td>\code
151   * Matrix<T,Dynamic,1>
152   * Matrix<T,1,Dynamic> \endcode</td><td>\code
153   * struct {
154   *   T *data;                  // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
155   *   Eigen::Index size;
156   *  };
157   * \endcode</td></tr>
158   * <tr><td>\code Matrix<T,Rows,Cols> \endcode</td><td>\code
159   * struct {
160   *   T data[Rows*Cols];        // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0
161   *  };
162   * \endcode</td></tr>
163   * <tr class="alt"><td>\code Matrix<T,Dynamic,Dynamic,0,MaxRows,MaxCols> \endcode</td><td>\code
164   * struct {
165   *   T data[MaxRows*MaxCols];  // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0
166   *   Eigen::Index rows, cols;
167   *  };
168   * \endcode</td></tr>
169   * </table>
170   * Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two
171   * smaller to EIGEN_MAX_STATIC_ALIGN_BYTES.
172   *
173   * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
174   * \ref TopicStorageOrders
175   */
176 
177 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
178 class Matrix
179   : public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
180 {
181   public:
182 
183     /** \brief Base class typedef.
184       * \sa PlainObjectBase
185       */
186     typedef PlainObjectBase<Matrix> Base;
187 
188     enum { Options = _Options };
189 
190     EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
191 
192     typedef typename Base::PlainObject PlainObject;
193 
194     using Base::base;
195     using Base::coeffRef;
196 
197     /**
198       * \brief Assigns matrices to each other.
199       *
200       * \note This is a special case of the templated operator=. Its purpose is
201       * to prevent a default operator= from hiding the templated operator=.
202       *
203       * \callgraph
204       */
205     EIGEN_DEVICE_FUNC
206     EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
207     {
208       return Base::_set(other);
209     }
210 
211     /** \internal
212       * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
213       *
214       * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
215       * it will be initialized.
216       *
217       * Note that copying a row-vector into a vector (and conversely) is allowed.
218       * The resizing, if any, is then done in the appropriate way so that row-vectors
219       * remain row-vectors and vectors remain vectors.
220       */
221     template<typename OtherDerived>
222     EIGEN_DEVICE_FUNC
223     EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase<OtherDerived>& other)
224     {
225       return Base::_set(other);
226     }
227 
228     /* Here, doxygen failed to copy the brief information when using \copydoc */
229 
230     /**
231       * \brief Copies the generic expression \a other into *this.
232       * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
233       */
234     template<typename OtherDerived>
235     EIGEN_DEVICE_FUNC
236     EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
237     {
238       return Base::operator=(other);
239     }
240 
241     template<typename OtherDerived>
242     EIGEN_DEVICE_FUNC
243     EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
244     {
245       return Base::operator=(func);
246     }
247 
248     /** \brief Default constructor.
249       *
250       * For fixed-size matrices, does nothing.
251       *
252       * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
253       * is called a null matrix. This constructor is the unique way to create null matrices: resizing
254       * a matrix to 0 is not supported.
255       *
256       * \sa resize(Index,Index)
257       */
258     EIGEN_DEVICE_FUNC
259     EIGEN_STRONG_INLINE Matrix() : Base()
260     {
261       Base::_check_template_params();
262       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
263     }
264 
265     // FIXME is it still needed
266     EIGEN_DEVICE_FUNC
267     explicit Matrix(internal::constructor_without_unaligned_array_assert)
268       : Base(internal::constructor_without_unaligned_array_assert())
269     { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
270 
271 #if EIGEN_HAS_RVALUE_REFERENCES
272     EIGEN_DEVICE_FUNC
273     Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
274       : Base(std::move(other))
275     {
276       Base::_check_template_params();
277       if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
278         Base::_set_noalias(other);
279     }
280     EIGEN_DEVICE_FUNC
281     Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
282     {
283       other.swap(*this);
284       return *this;
285     }
286 #endif
287 
288     #ifndef EIGEN_PARSED_BY_DOXYGEN
289 
290     // This constructor is for both 1x1 matrices and dynamic vectors
291     template<typename T>
292     EIGEN_DEVICE_FUNC
293     EIGEN_STRONG_INLINE explicit Matrix(const T& x)
294     {
295       Base::_check_template_params();
296       Base::template _init1<T>(x);
297     }
298 
299     template<typename T0, typename T1>
300     EIGEN_DEVICE_FUNC
301     EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
302     {
303       Base::_check_template_params();
304       Base::template _init2<T0,T1>(x, y);
305     }
306     #else
307     /** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
308     EIGEN_DEVICE_FUNC
309     explicit Matrix(const Scalar *data);
310 
311     /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
312       *
313       * This is useful for dynamic-size vectors. For fixed-size vectors,
314       * it is redundant to pass these parameters, so one should use the default constructor
315       * Matrix() instead.
316       *
317       * \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
318       * calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
319       * For fixed-size \c 1x1 matrices it is therefore recommended to use the default
320       * constructor Matrix() instead, especially when using one of the non standard
321       * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
322       */
323     EIGEN_STRONG_INLINE explicit Matrix(Index dim);
324     /** \brief Constructs an initialized 1x1 matrix with the given coefficient */
325     Matrix(const Scalar& x);
326     /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
327       *
328       * This is useful for dynamic-size matrices. For fixed-size matrices,
329       * it is redundant to pass these parameters, so one should use the default constructor
330       * Matrix() instead.
331       *
332       * \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
333       * calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
334       * For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default
335       * constructor Matrix() instead, especially when using one of the non standard
336       * \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
337       */
338     EIGEN_DEVICE_FUNC
339     Matrix(Index rows, Index cols);
340 
341     /** \brief Constructs an initialized 2D vector with given coefficients */
342     Matrix(const Scalar& x, const Scalar& y);
343     #endif
344 
345     /** \brief Constructs an initialized 3D vector with given coefficients */
346     EIGEN_DEVICE_FUNC
347     EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
348     {
349       Base::_check_template_params();
350       EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
351       m_storage.data()[0] = x;
352       m_storage.data()[1] = y;
353       m_storage.data()[2] = z;
354     }
355     /** \brief Constructs an initialized 4D vector with given coefficients */
356     EIGEN_DEVICE_FUNC
357     EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
358     {
359       Base::_check_template_params();
360       EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
361       m_storage.data()[0] = x;
362       m_storage.data()[1] = y;
363       m_storage.data()[2] = z;
364       m_storage.data()[3] = w;
365     }
366 
367 
368     /** \brief Copy constructor */
369     EIGEN_DEVICE_FUNC
370     EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other)
371     { }
372 
373     /** \brief Copy constructor for generic expressions.
374       * \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
375       */
376     template<typename OtherDerived>
377     EIGEN_DEVICE_FUNC
378     EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
379       : Base(other.derived())
380     { }
381 
382     EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
383     EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
384 
385     /////////// Geometry module ///////////
386 
387     template<typename OtherDerived>
388     EIGEN_DEVICE_FUNC
389     explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
390     template<typename OtherDerived>
391     EIGEN_DEVICE_FUNC
392     Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
393 
394     // allow to extend Matrix outside Eigen
395     #ifdef EIGEN_MATRIX_PLUGIN
396     #include EIGEN_MATRIX_PLUGIN
397     #endif
398 
399   protected:
400     template <typename Derived, typename OtherDerived, bool IsVector>
401     friend struct internal::conservative_resize_like_impl;
402 
403     using Base::m_storage;
404 };
405 
406 /** \defgroup matrixtypedefs Global matrix typedefs
407   *
408   * \ingroup Core_Module
409   *
410   * Eigen defines several typedef shortcuts for most common matrix and vector types.
411   *
412   * The general patterns are the following:
413   *
414   * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
415   * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
416   * for complex double.
417   *
418   * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
419   *
420   * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
421   * a fixed-size vector of 4 complex floats.
422   *
423   * \sa class Matrix
424   */
425 
426 #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)   \
427 /** \ingroup matrixtypedefs */                                    \
428 typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix;  \
429 /** \ingroup matrixtypedefs */                                    \
430 typedef Matrix<Type, Size, 1>    Vector##SizeSuffix##TypeSuffix;  \
431 /** \ingroup matrixtypedefs */                                    \
432 typedef Matrix<Type, 1, Size>    RowVector##SizeSuffix##TypeSuffix;
433 
434 #define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size)         \
435 /** \ingroup matrixtypedefs */                                    \
436 typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix;  \
437 /** \ingroup matrixtypedefs */                                    \
438 typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
439 
440 #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
441 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
442 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
443 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
444 EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
445 EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
446 EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
447 EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
448 
449 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int,                  i)
450 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float,                f)
451 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double,               d)
452 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>,  cf)
453 EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
454 
455 #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
456 #undef EIGEN_MAKE_TYPEDEFS
457 #undef EIGEN_MAKE_FIXED_TYPEDEFS
458 
459 } // end namespace Eigen
460 
461 #endif // EIGEN_MATRIX_H
462