1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_MATH_FUNCTIONS_AVX_H
11 #define EIGEN_MATH_FUNCTIONS_AVX_H
12 
13 /* The sin, cos, exp, and log functions of this file are loosely derived from
14  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
15  */
16 
17 namespace Eigen {
18 
19 namespace internal {
20 
pshiftleft(Packet8i v,int n)21 inline Packet8i pshiftleft(Packet8i v, int n)
22 {
23 #ifdef EIGEN_VECTORIZE_AVX2
24   return _mm256_slli_epi32(v, n);
25 #else
26   __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(v, 0), n);
27   __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(v, 1), n);
28   return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
29 #endif
30 }
31 
pshiftright(Packet8f v,int n)32 inline Packet8f pshiftright(Packet8f v, int n)
33 {
34 #ifdef EIGEN_VECTORIZE_AVX2
35   return _mm256_cvtepi32_ps(_mm256_srli_epi32(_mm256_castps_si256(v), n));
36 #else
37   __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 0), n);
38   __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 1), n);
39   return _mm256_cvtepi32_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1));
40 #endif
41 }
42 
43 // Sine function
44 // Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and
45 // evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants
46 // are (anti-)symmetric and thus have only odd/even coefficients
47 template <>
48 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
49 psin<Packet8f>(const Packet8f& _x) {
50   Packet8f x = _x;
51 
52   // Some useful values.
53   _EIGEN_DECLARE_CONST_Packet8i(one, 1);
54   _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
55   _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
56   _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f);
57   _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f);
58   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00f);
59   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04f);
60   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07f);
61   _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00f);
62 
63   // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period.
64   Packet8f z = pmul(x, p8f_one_over_pi);
65   Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four));
66   x = pmadd(shift, p8f_neg_pi_first, x);
67   x = pmadd(shift, p8f_neg_pi_second, x);
68   x = pmadd(shift, p8f_neg_pi_third, x);
69   z = pmul(x, p8f_four_over_pi);
70 
71   // Make a mask for the entries that need flipping, i.e. wherever the shift
72   // is odd.
73   Packet8i shift_ints = _mm256_cvtps_epi32(shift);
74   Packet8i shift_isodd = _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(shift_ints), _mm256_castsi256_ps(p8i_one)));
75   Packet8i sign_flip_mask = pshiftleft(shift_isodd, 31);
76 
77   // Create a mask for which interpolant to use, i.e. if z > 1, then the mask
78   // is set to ones for that entry.
79   Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ);
80 
81   // Evaluate the polynomial for the interval [1,3] in z.
82   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f);
83   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01f);
84   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02f);
85   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04f);
86   Packet8f z_minus_two = psub(z, p8f_two);
87   Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two);
88   Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4);
89   right = pmadd(right, z_minus_two2, p8f_coeff_right_2);
90   right = pmadd(right, z_minus_two2, p8f_coeff_right_0);
91 
92   // Evaluate the polynomial for the interval [-1,1] in z.
93   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01f);
94   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02f);
95   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03f);
96   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05f);
97   Packet8f z2 = pmul(z, z);
98   Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5);
99   left = pmadd(left, z2, p8f_coeff_left_3);
100   left = pmadd(left, z2, p8f_coeff_left_1);
101   left = pmul(left, z);
102 
103   // Assemble the results, i.e. select the left and right polynomials.
104   left = _mm256_andnot_ps(ival_mask, left);
105   right = _mm256_and_ps(ival_mask, right);
106   Packet8f res = _mm256_or_ps(left, right);
107 
108   // Flip the sign on the odd intervals and return the result.
109   res = _mm256_xor_ps(res, _mm256_castsi256_ps(sign_flip_mask));
110   return res;
111 }
112 
113 // Natural logarithm
114 // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
115 // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
116 // be easily approximated by a polynomial centered on m=1 for stability.
117 // TODO(gonnet): Further reduce the interval allowing for lower-degree
118 //               polynomial interpolants -> ... -> profit!
119 template <>
120 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
121 plog<Packet8f>(const Packet8f& _x) {
122   Packet8f x = _x;
123   _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
124   _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
125   _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f);
126 
127   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000);
128 
129   // The smallest non denormalized float number.
130   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000);
131   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000);
132 
133   // Polynomial coefficients.
134   _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f);
135   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f);
136   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f);
137   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f);
138   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f);
139   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f);
140   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f);
141   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f);
142   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f);
143   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f);
144   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f);
145   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f);
146 
147   Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ); // not greater equal is true if x is NaN
148   Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ);
149 
150   // Truncate input values to the minimum positive normal.
151   x = pmax(x, p8f_min_norm_pos);
152 
153   Packet8f emm0 = pshiftright(x,23);
154   Packet8f e = _mm256_sub_ps(emm0, p8f_126f);
155 
156   // Set the exponents to -1, i.e. x are in the range [0.5,1).
157   x = _mm256_and_ps(x, p8f_inv_mant_mask);
158   x = _mm256_or_ps(x, p8f_half);
159 
160   // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
161   // and shift by -1. The values are then centered around 0, which improves
162   // the stability of the polynomial evaluation.
163   //   if( x < SQRTHF ) {
164   //     e -= 1;
165   //     x = x + x - 1.0;
166   //   } else { x = x - 1.0; }
167   Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ);
168   Packet8f tmp = _mm256_and_ps(x, mask);
169   x = psub(x, p8f_1);
170   e = psub(e, _mm256_and_ps(p8f_1, mask));
171   x = padd(x, tmp);
172 
173   Packet8f x2 = pmul(x, x);
174   Packet8f x3 = pmul(x2, x);
175 
176   // Evaluate the polynomial approximant of degree 8 in three parts, probably
177   // to improve instruction-level parallelism.
178   Packet8f y, y1, y2;
179   y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1);
180   y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4);
181   y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7);
182   y = pmadd(y, x, p8f_cephes_log_p2);
183   y1 = pmadd(y1, x, p8f_cephes_log_p5);
184   y2 = pmadd(y2, x, p8f_cephes_log_p8);
185   y = pmadd(y, x3, y1);
186   y = pmadd(y, x3, y2);
187   y = pmul(y, x3);
188 
189   // Add the logarithm of the exponent back to the result of the interpolation.
190   y1 = pmul(e, p8f_cephes_log_q1);
191   tmp = pmul(x2, p8f_half);
192   y = padd(y, y1);
193   x = psub(x, tmp);
194   y2 = pmul(e, p8f_cephes_log_q2);
195   x = padd(x, y);
196   x = padd(x, y2);
197 
198   // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
199   return _mm256_or_ps(
200       _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)),
201       _mm256_and_ps(iszero_mask, p8f_minus_inf));
202 }
203 
204 // Exponential function. Works by writing "x = m*log(2) + r" where
205 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
206 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
207 template <>
208 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
209 pexp<Packet8f>(const Packet8f& _x) {
210   _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
211   _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
212   _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f);
213 
214   _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f);
215   _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f);
216 
217   _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f);
218 
219   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f);
220   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f);
221   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f);
222   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f);
223   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f);
224   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f);
225 
226   // Clamp x.
227   Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo);
228 
229   // Express exp(x) as exp(m*ln(2) + r), start by extracting
230   // m = floor(x/ln(2) + 0.5).
231   Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half));
232 
233 // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
234 // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
235 // truncation errors. Note that we don't use the "pmadd" function here to
236 // ensure that a precision-preserving FMA instruction is used.
237 #ifdef EIGEN_VECTORIZE_FMA
238   _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f);
239   Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x);
240 #else
241   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f);
242   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f);
243   Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1));
244   r = psub(r, pmul(m, p8f_cephes_exp_C2));
245 #endif
246 
247   Packet8f r2 = pmul(r, r);
248 
249   // TODO(gonnet): Split into odd/even polynomials and try to exploit
250   //               instruction-level parallelism.
251   Packet8f y = p8f_cephes_exp_p0;
252   y = pmadd(y, r, p8f_cephes_exp_p1);
253   y = pmadd(y, r, p8f_cephes_exp_p2);
254   y = pmadd(y, r, p8f_cephes_exp_p3);
255   y = pmadd(y, r, p8f_cephes_exp_p4);
256   y = pmadd(y, r, p8f_cephes_exp_p5);
257   y = pmadd(y, r2, r);
258   y = padd(y, p8f_1);
259 
260   // Build emm0 = 2^m.
261   Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127));
262   emm0 = pshiftleft(emm0, 23);
263 
264   // Return 2^m * exp(r).
265   return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x);
266 }
267 
268 // Hyperbolic Tangent function.
269 template <>
270 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
271 ptanh<Packet8f>(const Packet8f& x) {
272   return internal::generic_fast_tanh_float(x);
273 }
274 
275 template <>
276 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
277 pexp<Packet4d>(const Packet4d& _x) {
278   Packet4d x = _x;
279 
280   _EIGEN_DECLARE_CONST_Packet4d(1, 1.0);
281   _EIGEN_DECLARE_CONST_Packet4d(2, 2.0);
282   _EIGEN_DECLARE_CONST_Packet4d(half, 0.5);
283 
284   _EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437);
285   _EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303);
286 
287   _EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599);
288 
289   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4);
290   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2);
291   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1);
292 
293   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6);
294   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3);
295   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1);
296   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0);
297 
298   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125);
299   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6);
300   _EIGEN_DECLARE_CONST_Packet4i(1023, 1023);
301 
302   Packet4d tmp, fx;
303 
304   // clamp x
305   x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo);
306   // Express exp(x) as exp(g + n*log(2)).
307   fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half);
308 
309   // Get the integer modulus of log(2), i.e. the "n" described above.
310   fx = _mm256_floor_pd(fx);
311 
312   // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
313   // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
314   // digits right.
315   tmp = pmul(fx, p4d_cephes_exp_C1);
316   Packet4d z = pmul(fx, p4d_cephes_exp_C2);
317   x = psub(x, tmp);
318   x = psub(x, z);
319 
320   Packet4d x2 = pmul(x, x);
321 
322   // Evaluate the numerator polynomial of the rational interpolant.
323   Packet4d px = p4d_cephes_exp_p0;
324   px = pmadd(px, x2, p4d_cephes_exp_p1);
325   px = pmadd(px, x2, p4d_cephes_exp_p2);
326   px = pmul(px, x);
327 
328   // Evaluate the denominator polynomial of the rational interpolant.
329   Packet4d qx = p4d_cephes_exp_q0;
330   qx = pmadd(qx, x2, p4d_cephes_exp_q1);
331   qx = pmadd(qx, x2, p4d_cephes_exp_q2);
332   qx = pmadd(qx, x2, p4d_cephes_exp_q3);
333 
334   // I don't really get this bit, copied from the SSE2 routines, so...
335   // TODO(gonnet): Figure out what is going on here, perhaps find a better
336   // rational interpolant?
337   x = _mm256_div_pd(px, psub(qx, px));
338   x = pmadd(p4d_2, x, p4d_1);
339 
340   // Build e=2^n by constructing the exponents in a 128-bit vector and
341   // shifting them to where they belong in double-precision values.
342   __m128i emm0 = _mm256_cvtpd_epi32(fx);
343   emm0 = _mm_add_epi32(emm0, p4i_1023);
344   emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
345   __m128i lo = _mm_slli_epi64(emm0, 52);
346   __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
347   __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
348   e = _mm256_insertf128_si256(e, hi, 1);
349 
350   // Construct the result 2^n * exp(g) = e * x. The max is used to catch
351   // non-finite values in the input.
352   return pmax(pmul(x, _mm256_castsi256_pd(e)), _x);
353 }
354 
355 // Functions for sqrt.
356 // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
357 // of Newton's method, at a cost of 1-2 bits of precision as opposed to the
358 // exact solution. It does not handle +inf, or denormalized numbers correctly.
359 // The main advantage of this approach is not just speed, but also the fact that
360 // it can be inlined and pipelined with other computations, further reducing its
361 // effective latency. This is similar to Quake3's fast inverse square root.
362 // For detail see here: http://www.beyond3d.com/content/articles/8/
363 #if EIGEN_FAST_MATH
364 template <>
365 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
366 psqrt<Packet8f>(const Packet8f& _x) {
367   Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
368   Packet8f denormal_mask = _mm256_and_ps(
369       _mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
370                     _CMP_LT_OQ),
371       _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
372 
373   // Compute approximate reciprocal sqrt.
374   Packet8f x = _mm256_rsqrt_ps(_x);
375   // Do a single step of Newton's iteration.
376   x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
377   // Flush results for denormals to zero.
378   return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
379 }
380 #else
381 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
382 Packet8f psqrt<Packet8f>(const Packet8f& x) {
383   return _mm256_sqrt_ps(x);
384 }
385 #endif
386 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
387 Packet4d psqrt<Packet4d>(const Packet4d& x) {
388   return _mm256_sqrt_pd(x);
389 }
390 #if EIGEN_FAST_MATH
391 
392 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
393 Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
394   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
395   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(nan, 0x7fc00000);
396   _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
397   _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
398   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
399 
400   Packet8f neg_half = pmul(_x, p8f_minus_half);
401 
402   // select only the inverse sqrt of positive normal inputs (denormals are
403   // flushed to zero and cause infs as well).
404   Packet8f le_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
405   Packet8f x = _mm256_andnot_ps(le_zero_mask, _mm256_rsqrt_ps(_x));
406 
407   // Fill in NaNs and Infs for the negative/zero entries.
408   Packet8f neg_mask = _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_LT_OQ);
409   Packet8f zero_mask = _mm256_andnot_ps(neg_mask, le_zero_mask);
410   Packet8f infs_and_nans = _mm256_or_ps(_mm256_and_ps(neg_mask, p8f_nan),
411                                         _mm256_and_ps(zero_mask, p8f_inf));
412 
413   // Do a single step of Newton's iteration.
414   x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
415 
416   // Insert NaNs and Infs in all the right places.
417   return _mm256_or_ps(x, infs_and_nans);
418 }
419 
420 #else
421 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
422 Packet8f prsqrt<Packet8f>(const Packet8f& x) {
423   _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
424   return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
425 }
426 #endif
427 
428 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
429 Packet4d prsqrt<Packet4d>(const Packet4d& x) {
430   _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
431   return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
432 }
433 
434 
435 }  // end namespace internal
436 
437 }  // end namespace Eigen
438 
439 #endif  // EIGEN_MATH_FUNCTIONS_AVX_H
440