1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_COMPLEX_NEON_H
12 #define EIGEN_COMPLEX_NEON_H
13
14 namespace Eigen {
15
16 namespace internal {
17
p4ui_CONJ_XOR()18 inline uint32x4_t p4ui_CONJ_XOR() {
19 // See bug 1325, clang fails to call vld1q_u64.
20 #if EIGEN_COMP_CLANG
21 uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
22 return ret;
23 #else
24 static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
25 return vld1q_u32( conj_XOR_DATA );
26 #endif
27 }
28
p2ui_CONJ_XOR()29 inline uint32x2_t p2ui_CONJ_XOR() {
30 static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 };
31 return vld1_u32( conj_XOR_DATA );
32 }
33
34 //---------- float ----------
35 struct Packet2cf
36 {
Packet2cfPacket2cf37 EIGEN_STRONG_INLINE Packet2cf() {}
Packet2cfPacket2cf38 EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
39 Packet4f v;
40 };
41
42 template<> struct packet_traits<std::complex<float> > : default_packet_traits
43 {
44 typedef Packet2cf type;
45 typedef Packet2cf half;
46 enum {
47 Vectorizable = 1,
48 AlignedOnScalar = 1,
49 size = 2,
50 HasHalfPacket = 0,
51
52 HasAdd = 1,
53 HasSub = 1,
54 HasMul = 1,
55 HasDiv = 1,
56 HasNegate = 1,
57 HasAbs = 0,
58 HasAbs2 = 0,
59 HasMin = 0,
60 HasMax = 0,
61 HasSetLinear = 0
62 };
63 };
64
65 template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; };
66
67 template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
68 {
69 float32x2_t r64;
70 r64 = vld1_f32((float *)&from);
71
72 return Packet2cf(vcombine_f32(r64, r64));
73 }
74
75 template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
76 template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
77 template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
78 template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
79 {
80 Packet4ui b = vreinterpretq_u32_f32(a.v);
81 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR())));
82 }
83
84 template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
85 {
86 Packet4f v1, v2;
87
88 // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
89 v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
90 // Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
91 v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
92 // Multiply the real a with b
93 v1 = vmulq_f32(v1, b.v);
94 // Multiply the imag a with b
95 v2 = vmulq_f32(v2, b.v);
96 // Conjugate v2
97 v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR()));
98 // Swap real/imag elements in v2.
99 v2 = vrev64q_f32(v2);
100 // Add and return the result
101 return Packet2cf(vaddq_f32(v1, v2));
102 }
103
104 template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
105 {
106 return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
107 }
108 template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
109 {
110 return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
111 }
112 template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
113 {
114 return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
115 }
116 template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
117 {
118 return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
119 }
120
121 template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
122 template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
123
124 template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
125
126 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
127 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
128
129 template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
130 {
131 Packet4f res = pset1<Packet4f>(0.f);
132 res = vsetq_lane_f32(std::real(from[0*stride]), res, 0);
133 res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1);
134 res = vsetq_lane_f32(std::real(from[1*stride]), res, 2);
135 res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3);
136 return Packet2cf(res);
137 }
138
139 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
140 {
141 to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
142 to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
143 }
144
145 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((float *)addr); }
146
147 template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
148 {
149 std::complex<float> EIGEN_ALIGN16 x[2];
150 vst1q_f32((float *)x, a.v);
151 return x[0];
152 }
153
154 template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
155 {
156 float32x2_t a_lo, a_hi;
157 Packet4f a_r128;
158
159 a_lo = vget_low_f32(a.v);
160 a_hi = vget_high_f32(a.v);
161 a_r128 = vcombine_f32(a_hi, a_lo);
162
163 return Packet2cf(a_r128);
164 }
165
166 template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
167 {
168 return Packet2cf(vrev64q_f32(a.v));
169 }
170
171 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
172 {
173 float32x2_t a1, a2;
174 std::complex<float> s;
175
176 a1 = vget_low_f32(a.v);
177 a2 = vget_high_f32(a.v);
178 a2 = vadd_f32(a1, a2);
179 vst1_f32((float *)&s, a2);
180
181 return s;
182 }
183
184 template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
185 {
186 Packet4f sum1, sum2, sum;
187
188 // Add the first two 64-bit float32x2_t of vecs[0]
189 sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
190 sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
191 sum = vaddq_f32(sum1, sum2);
192
193 return Packet2cf(sum);
194 }
195
196 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
197 {
198 float32x2_t a1, a2, v1, v2, prod;
199 std::complex<float> s;
200
201 a1 = vget_low_f32(a.v);
202 a2 = vget_high_f32(a.v);
203 // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
204 v1 = vdup_lane_f32(a1, 0);
205 // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
206 v2 = vdup_lane_f32(a1, 1);
207 // Multiply the real a with b
208 v1 = vmul_f32(v1, a2);
209 // Multiply the imag a with b
210 v2 = vmul_f32(v2, a2);
211 // Conjugate v2
212 v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR()));
213 // Swap real/imag elements in v2.
214 v2 = vrev64_f32(v2);
215 // Add v1, v2
216 prod = vadd_f32(v1, v2);
217
218 vst1_f32((float *)&s, prod);
219
220 return s;
221 }
222
223 template<int Offset>
224 struct palign_impl<Offset,Packet2cf>
225 {
226 EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
227 {
228 if (Offset==1)
229 {
230 first.v = vextq_f32(first.v, second.v, 2);
231 }
232 }
233 };
234
235 template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
236 {
237 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
238 { return padd(pmul(x,y),c); }
239
240 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
241 {
242 return internal::pmul(a, pconj(b));
243 }
244 };
245
246 template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
247 {
248 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
249 { return padd(pmul(x,y),c); }
250
251 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
252 {
253 return internal::pmul(pconj(a), b);
254 }
255 };
256
257 template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
258 {
259 EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
260 { return padd(pmul(x,y),c); }
261
262 EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
263 {
264 return pconj(internal::pmul(a, b));
265 }
266 };
267
268 template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
269 {
270 // TODO optimize it for NEON
271 Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
272 Packet4f s, rev_s;
273
274 // this computes the norm
275 s = vmulq_f32(b.v, b.v);
276 rev_s = vrev64q_f32(s);
277
278 return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
279 }
280
281 EIGEN_DEVICE_FUNC inline void
282 ptranspose(PacketBlock<Packet2cf,2>& kernel) {
283 Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
284 kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v));
285 kernel.packet[1].v = tmp;
286 }
287
288 //---------- double ----------
289 #if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
290
291 // See bug 1325, clang fails to call vld1q_u64.
292 #if EIGEN_COMP_CLANG
293 static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000};
294 #else
295 const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 };
296 static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA );
297 #endif
298
299 struct Packet1cd
300 {
301 EIGEN_STRONG_INLINE Packet1cd() {}
302 EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
303 Packet2d v;
304 };
305
306 template<> struct packet_traits<std::complex<double> > : default_packet_traits
307 {
308 typedef Packet1cd type;
309 typedef Packet1cd half;
310 enum {
311 Vectorizable = 1,
312 AlignedOnScalar = 0,
313 size = 1,
314 HasHalfPacket = 0,
315
316 HasAdd = 1,
317 HasSub = 1,
318 HasMul = 1,
319 HasDiv = 1,
320 HasNegate = 1,
321 HasAbs = 0,
322 HasAbs2 = 0,
323 HasMin = 0,
324 HasMax = 0,
325 HasSetLinear = 0
326 };
327 };
328
329 template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
330
331 template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
332 template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
333
334 template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
335 { /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
336
337 template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd<Packet2d>(a.v,b.v)); }
338 template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub<Packet2d>(a.v,b.v)); }
339 template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate<Packet2d>(a.v)); }
340 template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); }
341
342 template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
343 {
344 Packet2d v1, v2;
345
346 // Get the real values of a
347 v1 = vdupq_lane_f64(vget_low_f64(a.v), 0);
348 // Get the imag values of a
349 v2 = vdupq_lane_f64(vget_high_f64(a.v), 0);
350 // Multiply the real a with b
351 v1 = vmulq_f64(v1, b.v);
352 // Multiply the imag a with b
353 v2 = vmulq_f64(v2, b.v);
354 // Conjugate v2
355 v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR));
356 // Swap real/imag elements in v2.
357 v2 = preverse<Packet2d>(v2);
358 // Add and return the result
359 return Packet1cd(vaddq_f64(v1, v2));
360 }
361
362 template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
363 {
364 return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
365 }
366 template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
367 {
368 return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
369 }
370 template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
371 {
372 return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
373 }
374 template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
375 {
376 return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
377 }
378
379 template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
380
381 template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
382 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
383
384 template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((double *)addr); }
385
386 template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
387 {
388 Packet2d res = pset1<Packet2d>(0.0);
389 res = vsetq_lane_f64(std::real(from[0*stride]), res, 0);
390 res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1);
391 return Packet1cd(res);
392 }
393
394 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
395 {
396 to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1));
397 }
398
399
400 template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
401 {
402 std::complex<double> EIGEN_ALIGN16 res;
403 pstore<std::complex<double> >(&res, a);
404
405 return res;
406 }
407
408 template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
409
410 template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
411
412 template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; }
413
414 template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
415
416 template<int Offset>
417 struct palign_impl<Offset,Packet1cd>
418 {
419 static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
420 {
421 // FIXME is it sure we never have to align a Packet1cd?
422 // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
423 }
424 };
425
426 template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
427 {
428 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
429 { return padd(pmul(x,y),c); }
430
431 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
432 {
433 return internal::pmul(a, pconj(b));
434 }
435 };
436
437 template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
438 {
439 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
440 { return padd(pmul(x,y),c); }
441
442 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
443 {
444 return internal::pmul(pconj(a), b);
445 }
446 };
447
448 template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
449 {
450 EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
451 { return padd(pmul(x,y),c); }
452
453 EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
454 {
455 return pconj(internal::pmul(a, b));
456 }
457 };
458
459 template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
460 {
461 // TODO optimize it for NEON
462 Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
463 Packet2d s = pmul<Packet2d>(b.v, b.v);
464 Packet2d rev_s = preverse<Packet2d>(s);
465
466 return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s)));
467 }
468
469 EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
470 {
471 return Packet1cd(preverse(Packet2d(x.v)));
472 }
473
474 EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
475 {
476 Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v));
477 kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v));
478 kernel.packet[1].v = tmp;
479 }
480 #endif // EIGEN_ARCH_ARM64
481
482 } // end namespace internal
483
484 } // end namespace Eigen
485
486 #endif // EIGEN_COMPLEX_NEON_H
487