1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_PASTIXSUPPORT_H
11 #define EIGEN_PASTIXSUPPORT_H
12 
13 namespace Eigen {
14 
15 #if defined(DCOMPLEX)
16   #define PASTIX_COMPLEX  COMPLEX
17   #define PASTIX_DCOMPLEX DCOMPLEX
18 #else
19   #define PASTIX_COMPLEX  std::complex<float>
20   #define PASTIX_DCOMPLEX std::complex<double>
21 #endif
22 
23 /** \ingroup PaStiXSupport_Module
24   * \brief Interface to the PaStix solver
25   *
26   * This class is used to solve the linear systems A.X = B via the PaStix library.
27   * The matrix can be either real or complex, symmetric or not.
28   *
29   * \sa TutorialSparseDirectSolvers
30   */
31 template<typename _MatrixType, bool IsStrSym = false> class PastixLU;
32 template<typename _MatrixType, int Options> class PastixLLT;
33 template<typename _MatrixType, int Options> class PastixLDLT;
34 
35 namespace internal
36 {
37 
38   template<class Pastix> struct pastix_traits;
39 
40   template<typename _MatrixType>
41   struct pastix_traits< PastixLU<_MatrixType> >
42   {
43     typedef _MatrixType MatrixType;
44     typedef typename _MatrixType::Scalar Scalar;
45     typedef typename _MatrixType::RealScalar RealScalar;
46     typedef typename _MatrixType::StorageIndex StorageIndex;
47   };
48 
49   template<typename _MatrixType, int Options>
50   struct pastix_traits< PastixLLT<_MatrixType,Options> >
51   {
52     typedef _MatrixType MatrixType;
53     typedef typename _MatrixType::Scalar Scalar;
54     typedef typename _MatrixType::RealScalar RealScalar;
55     typedef typename _MatrixType::StorageIndex StorageIndex;
56   };
57 
58   template<typename _MatrixType, int Options>
59   struct pastix_traits< PastixLDLT<_MatrixType,Options> >
60   {
61     typedef _MatrixType MatrixType;
62     typedef typename _MatrixType::Scalar Scalar;
63     typedef typename _MatrixType::RealScalar RealScalar;
64     typedef typename _MatrixType::StorageIndex StorageIndex;
65   };
66 
67   void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm)
68   {
69     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
70     if (nbrhs == 0) {x = NULL; nbrhs=1;}
71     s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
72   }
73 
74   void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm)
75   {
76     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
77     if (nbrhs == 0) {x = NULL; nbrhs=1;}
78     d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm);
79   }
80 
81   void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<float> *vals, int *perm, int * invp, std::complex<float> *x, int nbrhs, int *iparm, double *dparm)
82   {
83     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
84     if (nbrhs == 0) {x = NULL; nbrhs=1;}
85     c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
86   }
87 
88   void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
89   {
90     if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
91     if (nbrhs == 0) {x = NULL; nbrhs=1;}
92     z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);
93   }
94 
95   // Convert the matrix  to Fortran-style Numbering
96   template <typename MatrixType>
97   void c_to_fortran_numbering (MatrixType& mat)
98   {
99     if ( !(mat.outerIndexPtr()[0]) )
100     {
101       int i;
102       for(i = 0; i <= mat.rows(); ++i)
103         ++mat.outerIndexPtr()[i];
104       for(i = 0; i < mat.nonZeros(); ++i)
105         ++mat.innerIndexPtr()[i];
106     }
107   }
108 
109   // Convert to C-style Numbering
110   template <typename MatrixType>
111   void fortran_to_c_numbering (MatrixType& mat)
112   {
113     // Check the Numbering
114     if ( mat.outerIndexPtr()[0] == 1 )
115     { // Convert to C-style numbering
116       int i;
117       for(i = 0; i <= mat.rows(); ++i)
118         --mat.outerIndexPtr()[i];
119       for(i = 0; i < mat.nonZeros(); ++i)
120         --mat.innerIndexPtr()[i];
121     }
122   }
123 }
124 
125 // This is the base class to interface with PaStiX functions.
126 // Users should not used this class directly.
127 template <class Derived>
128 class PastixBase : public SparseSolverBase<Derived>
129 {
130   protected:
131     typedef SparseSolverBase<Derived> Base;
132     using Base::derived;
133     using Base::m_isInitialized;
134   public:
135     using Base::_solve_impl;
136 
137     typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
138     typedef _MatrixType MatrixType;
139     typedef typename MatrixType::Scalar Scalar;
140     typedef typename MatrixType::RealScalar RealScalar;
141     typedef typename MatrixType::StorageIndex StorageIndex;
142     typedef Matrix<Scalar,Dynamic,1> Vector;
143     typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix;
144     enum {
145       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
146       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
147     };
148 
149   public:
150 
151     PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0)
152     {
153       init();
154     }
155 
156     ~PastixBase()
157     {
158       clean();
159     }
160 
161     template<typename Rhs,typename Dest>
162     bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
163 
164     /** Returns a reference to the integer vector IPARM of PaStiX parameters
165       * to modify the default parameters.
166       * The statistics related to the different phases of factorization and solve are saved here as well
167       * \sa analyzePattern() factorize()
168       */
169     Array<StorageIndex,IPARM_SIZE,1>& iparm()
170     {
171       return m_iparm;
172     }
173 
174     /** Return a reference to a particular index parameter of the IPARM vector
175      * \sa iparm()
176      */
177 
178     int& iparm(int idxparam)
179     {
180       return m_iparm(idxparam);
181     }
182 
183      /** Returns a reference to the double vector DPARM of PaStiX parameters
184       * The statistics related to the different phases of factorization and solve are saved here as well
185       * \sa analyzePattern() factorize()
186       */
187     Array<double,DPARM_SIZE,1>& dparm()
188     {
189       return m_dparm;
190     }
191 
192 
193     /** Return a reference to a particular index parameter of the DPARM vector
194      * \sa dparm()
195      */
196     double& dparm(int idxparam)
197     {
198       return m_dparm(idxparam);
199     }
200 
201     inline Index cols() const { return m_size; }
202     inline Index rows() const { return m_size; }
203 
204      /** \brief Reports whether previous computation was successful.
205       *
206       * \returns \c Success if computation was succesful,
207       *          \c NumericalIssue if the PaStiX reports a problem
208       *          \c InvalidInput if the input matrix is invalid
209       *
210       * \sa iparm()
211       */
212     ComputationInfo info() const
213     {
214       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
215       return m_info;
216     }
217 
218   protected:
219 
220     // Initialize the Pastix data structure, check the matrix
221     void init();
222 
223     // Compute the ordering and the symbolic factorization
224     void analyzePattern(ColSpMatrix& mat);
225 
226     // Compute the numerical factorization
227     void factorize(ColSpMatrix& mat);
228 
229     // Free all the data allocated by Pastix
230     void clean()
231     {
232       eigen_assert(m_initisOk && "The Pastix structure should be allocated first");
233       m_iparm(IPARM_START_TASK) = API_TASK_CLEAN;
234       m_iparm(IPARM_END_TASK) = API_TASK_CLEAN;
235       internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
236                              m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
237     }
238 
239     void compute(ColSpMatrix& mat);
240 
241     int m_initisOk;
242     int m_analysisIsOk;
243     int m_factorizationIsOk;
244     mutable ComputationInfo m_info;
245     mutable pastix_data_t *m_pastixdata; // Data structure for pastix
246     mutable int m_comm; // The MPI communicator identifier
247     mutable Array<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters
248     mutable Array<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters
249     mutable Matrix<StorageIndex,Dynamic,1> m_perm;  // Permutation vector
250     mutable Matrix<StorageIndex,Dynamic,1> m_invp;  // Inverse permutation vector
251     mutable int m_size; // Size of the matrix
252 };
253 
254  /** Initialize the PaStiX data structure.
255    *A first call to this function fills iparm and dparm with the default PaStiX parameters
256    * \sa iparm() dparm()
257    */
258 template <class Derived>
259 void PastixBase<Derived>::init()
260 {
261   m_size = 0;
262   m_iparm.setZero(IPARM_SIZE);
263   m_dparm.setZero(DPARM_SIZE);
264 
265   m_iparm(IPARM_MODIFY_PARAMETER) = API_NO;
266   pastix(&m_pastixdata, MPI_COMM_WORLD,
267          0, 0, 0, 0,
268          0, 0, 0, 1, m_iparm.data(), m_dparm.data());
269 
270   m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO;
271   m_iparm[IPARM_VERBOSE]             = API_VERBOSE_NOT;
272   m_iparm[IPARM_ORDERING]            = API_ORDER_SCOTCH;
273   m_iparm[IPARM_INCOMPLETE]          = API_NO;
274   m_iparm[IPARM_OOC_LIMIT]           = 2000;
275   m_iparm[IPARM_RHS_MAKING]          = API_RHS_B;
276   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
277 
278   m_iparm(IPARM_START_TASK) = API_TASK_INIT;
279   m_iparm(IPARM_END_TASK) = API_TASK_INIT;
280   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0,
281                          0, 0, 0, 0, m_iparm.data(), m_dparm.data());
282 
283   // Check the returned error
284   if(m_iparm(IPARM_ERROR_NUMBER)) {
285     m_info = InvalidInput;
286     m_initisOk = false;
287   }
288   else {
289     m_info = Success;
290     m_initisOk = true;
291   }
292 }
293 
294 template <class Derived>
295 void PastixBase<Derived>::compute(ColSpMatrix& mat)
296 {
297   eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared");
298 
299   analyzePattern(mat);
300   factorize(mat);
301 
302   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
303 }
304 
305 
306 template <class Derived>
307 void PastixBase<Derived>::analyzePattern(ColSpMatrix& mat)
308 {
309   eigen_assert(m_initisOk && "The initialization of PaSTiX failed");
310 
311   // clean previous calls
312   if(m_size>0)
313     clean();
314 
315   m_size = internal::convert_index<int>(mat.rows());
316   m_perm.resize(m_size);
317   m_invp.resize(m_size);
318 
319   m_iparm(IPARM_START_TASK) = API_TASK_ORDERING;
320   m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE;
321   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
322                mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
323 
324   // Check the returned error
325   if(m_iparm(IPARM_ERROR_NUMBER))
326   {
327     m_info = NumericalIssue;
328     m_analysisIsOk = false;
329   }
330   else
331   {
332     m_info = Success;
333     m_analysisIsOk = true;
334   }
335 }
336 
337 template <class Derived>
338 void PastixBase<Derived>::factorize(ColSpMatrix& mat)
339 {
340 //   if(&m_cpyMat != &mat) m_cpyMat = mat;
341   eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase");
342   m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT;
343   m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT;
344   m_size = internal::convert_index<int>(mat.rows());
345 
346   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(),
347                mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data());
348 
349   // Check the returned error
350   if(m_iparm(IPARM_ERROR_NUMBER))
351   {
352     m_info = NumericalIssue;
353     m_factorizationIsOk = false;
354     m_isInitialized = false;
355   }
356   else
357   {
358     m_info = Success;
359     m_factorizationIsOk = true;
360     m_isInitialized = true;
361   }
362 }
363 
364 /* Solve the system */
365 template<typename Base>
366 template<typename Rhs,typename Dest>
367 bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
368 {
369   eigen_assert(m_isInitialized && "The matrix should be factorized first");
370   EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
371                      THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
372   int rhs = 1;
373 
374   x = b; /* on return, x is overwritten by the computed solution */
375 
376   for (int i = 0; i < b.cols(); i++){
377     m_iparm[IPARM_START_TASK]          = API_TASK_SOLVE;
378     m_iparm[IPARM_END_TASK]            = API_TASK_REFINE;
379 
380     internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0,
381                            m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data());
382   }
383 
384   // Check the returned error
385   m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue;
386 
387   return m_iparm(IPARM_ERROR_NUMBER)==0;
388 }
389 
390 /** \ingroup PaStiXSupport_Module
391   * \class PastixLU
392   * \brief Sparse direct LU solver based on PaStiX library
393   *
394   * This class is used to solve the linear systems A.X = B with a supernodal LU
395   * factorization in the PaStiX library. The matrix A should be squared and nonsingular
396   * PaStiX requires that the matrix A has a symmetric structural pattern.
397   * This interface can symmetrize the input matrix otherwise.
398   * The vectors or matrices X and B can be either dense or sparse.
399   *
400   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
401   * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false
402   * NOTE : Note that if the analysis and factorization phase are called separately,
403   * the input matrix will be symmetrized at each call, hence it is advised to
404   * symmetrize the matrix in a end-user program and set \p IsStrSym to true
405   *
406   * \implsparsesolverconcept
407   *
408   * \sa \ref TutorialSparseSolverConcept, class SparseLU
409   *
410   */
411 template<typename _MatrixType, bool IsStrSym>
412 class PastixLU : public PastixBase< PastixLU<_MatrixType> >
413 {
414   public:
415     typedef _MatrixType MatrixType;
416     typedef PastixBase<PastixLU<MatrixType> > Base;
417     typedef typename Base::ColSpMatrix ColSpMatrix;
418     typedef typename MatrixType::StorageIndex StorageIndex;
419 
420   public:
421     PastixLU() : Base()
422     {
423       init();
424     }
425 
426     explicit PastixLU(const MatrixType& matrix):Base()
427     {
428       init();
429       compute(matrix);
430     }
431     /** Compute the LU supernodal factorization of \p matrix.
432       * iparm and dparm can be used to tune the PaStiX parameters.
433       * see the PaStiX user's manual
434       * \sa analyzePattern() factorize()
435       */
436     void compute (const MatrixType& matrix)
437     {
438       m_structureIsUptodate = false;
439       ColSpMatrix temp;
440       grabMatrix(matrix, temp);
441       Base::compute(temp);
442     }
443     /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern.
444       * Several ordering methods can be used at this step. See the PaStiX user's manual.
445       * The result of this operation can be used with successive matrices having the same pattern as \p matrix
446       * \sa factorize()
447       */
448     void analyzePattern(const MatrixType& matrix)
449     {
450       m_structureIsUptodate = false;
451       ColSpMatrix temp;
452       grabMatrix(matrix, temp);
453       Base::analyzePattern(temp);
454     }
455 
456     /** Compute the LU supernodal factorization of \p matrix
457       * WARNING The matrix \p matrix should have the same structural pattern
458       * as the same used in the analysis phase.
459       * \sa analyzePattern()
460       */
461     void factorize(const MatrixType& matrix)
462     {
463       ColSpMatrix temp;
464       grabMatrix(matrix, temp);
465       Base::factorize(temp);
466     }
467   protected:
468 
469     void init()
470     {
471       m_structureIsUptodate = false;
472       m_iparm(IPARM_SYM) = API_SYM_NO;
473       m_iparm(IPARM_FACTORIZATION) = API_FACT_LU;
474     }
475 
476     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
477     {
478       if(IsStrSym)
479         out = matrix;
480       else
481       {
482         if(!m_structureIsUptodate)
483         {
484           // update the transposed structure
485           m_transposedStructure = matrix.transpose();
486 
487           // Set the elements of the matrix to zero
488           for (Index j=0; j<m_transposedStructure.outerSize(); ++j)
489             for(typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it)
490               it.valueRef() = 0.0;
491 
492           m_structureIsUptodate = true;
493         }
494 
495         out = m_transposedStructure + matrix;
496       }
497       internal::c_to_fortran_numbering(out);
498     }
499 
500     using Base::m_iparm;
501     using Base::m_dparm;
502 
503     ColSpMatrix m_transposedStructure;
504     bool m_structureIsUptodate;
505 };
506 
507 /** \ingroup PaStiXSupport_Module
508   * \class PastixLLT
509   * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
510   *
511   * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization
512   * available in the PaStiX library. The matrix A should be symmetric and positive definite
513   * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
514   * The vectors or matrices X and B can be either dense or sparse
515   *
516   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
517   * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
518   *
519   * \implsparsesolverconcept
520   *
521   * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
522   */
523 template<typename _MatrixType, int _UpLo>
524 class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> >
525 {
526   public:
527     typedef _MatrixType MatrixType;
528     typedef PastixBase<PastixLLT<MatrixType, _UpLo> > Base;
529     typedef typename Base::ColSpMatrix ColSpMatrix;
530 
531   public:
532     enum { UpLo = _UpLo };
533     PastixLLT() : Base()
534     {
535       init();
536     }
537 
538     explicit PastixLLT(const MatrixType& matrix):Base()
539     {
540       init();
541       compute(matrix);
542     }
543 
544     /** Compute the L factor of the LL^T supernodal factorization of \p matrix
545       * \sa analyzePattern() factorize()
546       */
547     void compute (const MatrixType& matrix)
548     {
549       ColSpMatrix temp;
550       grabMatrix(matrix, temp);
551       Base::compute(temp);
552     }
553 
554      /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern
555       * The result of this operation can be used with successive matrices having the same pattern as \p matrix
556       * \sa factorize()
557       */
558     void analyzePattern(const MatrixType& matrix)
559     {
560       ColSpMatrix temp;
561       grabMatrix(matrix, temp);
562       Base::analyzePattern(temp);
563     }
564       /** Compute the LL^T supernodal numerical factorization of \p matrix
565         * \sa analyzePattern()
566         */
567     void factorize(const MatrixType& matrix)
568     {
569       ColSpMatrix temp;
570       grabMatrix(matrix, temp);
571       Base::factorize(temp);
572     }
573   protected:
574     using Base::m_iparm;
575 
576     void init()
577     {
578       m_iparm(IPARM_SYM) = API_SYM_YES;
579       m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT;
580     }
581 
582     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
583     {
584       out.resize(matrix.rows(), matrix.cols());
585       // Pastix supports only lower, column-major matrices
586       out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
587       internal::c_to_fortran_numbering(out);
588     }
589 };
590 
591 /** \ingroup PaStiXSupport_Module
592   * \class PastixLDLT
593   * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library
594   *
595   * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization
596   * available in the PaStiX library. The matrix A should be symmetric and positive definite
597   * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX
598   * The vectors or matrices X and B can be either dense or sparse
599   *
600   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
601   * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
602   *
603   * \implsparsesolverconcept
604   *
605   * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT
606   */
607 template<typename _MatrixType, int _UpLo>
608 class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
609 {
610   public:
611     typedef _MatrixType MatrixType;
612     typedef PastixBase<PastixLDLT<MatrixType, _UpLo> > Base;
613     typedef typename Base::ColSpMatrix ColSpMatrix;
614 
615   public:
616     enum { UpLo = _UpLo };
617     PastixLDLT():Base()
618     {
619       init();
620     }
621 
622     explicit PastixLDLT(const MatrixType& matrix):Base()
623     {
624       init();
625       compute(matrix);
626     }
627 
628     /** Compute the L and D factors of the LDL^T factorization of \p matrix
629       * \sa analyzePattern() factorize()
630       */
631     void compute (const MatrixType& matrix)
632     {
633       ColSpMatrix temp;
634       grabMatrix(matrix, temp);
635       Base::compute(temp);
636     }
637 
638     /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern
639       * The result of this operation can be used with successive matrices having the same pattern as \p matrix
640       * \sa factorize()
641       */
642     void analyzePattern(const MatrixType& matrix)
643     {
644       ColSpMatrix temp;
645       grabMatrix(matrix, temp);
646       Base::analyzePattern(temp);
647     }
648     /** Compute the LDL^T supernodal numerical factorization of \p matrix
649       *
650       */
651     void factorize(const MatrixType& matrix)
652     {
653       ColSpMatrix temp;
654       grabMatrix(matrix, temp);
655       Base::factorize(temp);
656     }
657 
658   protected:
659     using Base::m_iparm;
660 
661     void init()
662     {
663       m_iparm(IPARM_SYM) = API_SYM_YES;
664       m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT;
665     }
666 
667     void grabMatrix(const MatrixType& matrix, ColSpMatrix& out)
668     {
669       // Pastix supports only lower, column-major matrices
670       out.resize(matrix.rows(), matrix.cols());
671       out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>();
672       internal::c_to_fortran_numbering(out);
673     }
674 };
675 
676 } // end namespace Eigen
677 
678 #endif
679