1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "common.h"
11 
12 struct scalar_norm1_op {
13   typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTORscalar_norm1_op14   EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
15   inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
16 };
17 namespace Eigen {
18   namespace internal {
19     template<> struct functor_traits<scalar_norm1_op >
20     {
21       enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
22     };
23   }
24 }
25 
26 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
27 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
28 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
29 {
30 //   std::cerr << "__asum " << *n << " " << *incx << "\n";
31   Complex* x = reinterpret_cast<Complex*>(px);
32 
33   if(*n<=0) return 0;
34 
35   if(*incx==1)  return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
36   else          return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
37 }
38 
39 // computes a dot product of a conjugated vector with another vector.
40 int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
41 {
42 //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
43   Scalar* res = reinterpret_cast<Scalar*>(pres);
44 
45   if(*n<=0)
46   {
47     *res = Scalar(0);
48     return 0;
49   }
50 
51   Scalar* x = reinterpret_cast<Scalar*>(px);
52   Scalar* y = reinterpret_cast<Scalar*>(py);
53 
54   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).dot(make_vector(y,*n)));
55   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
56   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
57   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
58   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
59   return 0;
60 }
61 
62 // computes a vector-vector dot product without complex conjugation.
63 int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
64 {
65   Scalar* res = reinterpret_cast<Scalar*>(pres);
66 
67   if(*n<=0)
68   {
69     *res = Scalar(0);
70     return 0;
71   }
72 
73   Scalar* x = reinterpret_cast<Scalar*>(px);
74   Scalar* y = reinterpret_cast<Scalar*>(py);
75 
76   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
77   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
78   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
79   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
80   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
81   return 0;
82 }
83 
84 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
85 {
86 //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
87   if(*n<=0) return 0;
88 
89   Scalar* x = reinterpret_cast<Scalar*>(px);
90 
91   if(*incx==1)
92     return make_vector(x,*n).stableNorm();
93 
94   return make_vector(x,*n,*incx).stableNorm();
95 }
96 
97 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
98 {
99   if(*n<=0) return 0;
100 
101   Scalar* x = reinterpret_cast<Scalar*>(px);
102   Scalar* y = reinterpret_cast<Scalar*>(py);
103   RealScalar c = *pc;
104   RealScalar s = *ps;
105 
106   StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
107   StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
108 
109   Reverse<StridedVectorType> rvx(vx);
110   Reverse<StridedVectorType> rvy(vy);
111 
112   // TODO implement mixed real-scalar rotations
113        if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
114   else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
115   else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));
116 
117   return 0;
118 }
119 
120 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
121 {
122   if(*n<=0) return 0;
123 
124   Scalar* x = reinterpret_cast<Scalar*>(px);
125   RealScalar alpha = *palpha;
126 
127 //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
128 
129   if(*incx==1)  make_vector(x,*n) *= alpha;
130   else          make_vector(x,*n,std::abs(*incx)) *= alpha;
131 
132   return 0;
133 }
134