1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include "svd_fill.h"
13 #include <limits>
14 #include <Eigen/Eigenvalues>
15 #include <Eigen/SparseCore>
16 
17 
selfadjointeigensolver_essential_check(const MatrixType & m)18 template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m)
19 {
20   typedef typename MatrixType::Scalar Scalar;
21   typedef typename NumTraits<Scalar>::Real RealScalar;
22   RealScalar eival_eps = numext::mini<RealScalar>(test_precision<RealScalar>(),  NumTraits<Scalar>::dummy_precision()*20000);
23 
24   SelfAdjointEigenSolver<MatrixType> eiSymm(m);
25   VERIFY_IS_EQUAL(eiSymm.info(), Success);
26 
27   RealScalar scaling = m.cwiseAbs().maxCoeff();
28 
29   if(scaling<(std::numeric_limits<RealScalar>::min)())
30   {
31     VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
32   }
33   else
34   {
35     VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling,
36                      (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling);
37   }
38   VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
39   VERIFY_IS_UNITARY(eiSymm.eigenvectors());
40 
41   if(m.cols()<=4)
42   {
43     SelfAdjointEigenSolver<MatrixType> eiDirect;
44     eiDirect.computeDirect(m);
45     VERIFY_IS_EQUAL(eiDirect.info(), Success);
46     if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) )
47     {
48       std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n"
49                 << "obtained eigenvalues:  " << eiDirect.eigenvalues().transpose() << "\n"
50                 << "diff:                  " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n"
51                 << "error (eps):           " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << "  (" << eival_eps << ")\n";
52     }
53     if(scaling<(std::numeric_limits<RealScalar>::min)())
54     {
55       VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
56     }
57     else
58     {
59       VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
60       VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling,
61                        (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling);
62       VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
63     }
64 
65     VERIFY_IS_UNITARY(eiDirect.eigenvectors());
66   }
67 }
68 
selfadjointeigensolver(const MatrixType & m)69 template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
70 {
71   typedef typename MatrixType::Index Index;
72   /* this test covers the following files:
73      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
74   */
75   Index rows = m.rows();
76   Index cols = m.cols();
77 
78   typedef typename MatrixType::Scalar Scalar;
79   typedef typename NumTraits<Scalar>::Real RealScalar;
80 
81   RealScalar largerEps = 10*test_precision<RealScalar>();
82 
83   MatrixType a = MatrixType::Random(rows,cols);
84   MatrixType a1 = MatrixType::Random(rows,cols);
85   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
86   MatrixType symmC = symmA;
87 
88   svd_fill_random(symmA,Symmetric);
89 
90   symmA.template triangularView<StrictlyUpper>().setZero();
91   symmC.template triangularView<StrictlyUpper>().setZero();
92 
93   MatrixType b = MatrixType::Random(rows,cols);
94   MatrixType b1 = MatrixType::Random(rows,cols);
95   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
96   symmB.template triangularView<StrictlyUpper>().setZero();
97 
98   CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );
99 
100   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
101   // generalized eigen pb
102   GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
103 
104   SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
105   VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
106   VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
107 
108   // generalized eigen problem Ax = lBx
109   eiSymmGen.compute(symmC, symmB,Ax_lBx);
110   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
111   VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
112           symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
113 
114   // generalized eigen problem BAx = lx
115   eiSymmGen.compute(symmC, symmB,BAx_lx);
116   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
117   VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
118          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
119 
120   // generalized eigen problem ABx = lx
121   eiSymmGen.compute(symmC, symmB,ABx_lx);
122   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
123   VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
124          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
125 
126 
127   eiSymm.compute(symmC);
128   MatrixType sqrtSymmA = eiSymm.operatorSqrt();
129   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
130   VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
131 
132   MatrixType id = MatrixType::Identity(rows, cols);
133   VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
134 
135   SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
136   VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
137   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
138   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
139   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
140   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
141 
142   eiSymmUninitialized.compute(symmA, false);
143   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
144   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
145   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
146 
147   // test Tridiagonalization's methods
148   Tridiagonalization<MatrixType> tridiag(symmC);
149   VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
150   VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
151   Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT();
152   if(rows>1 && cols>1) {
153     // FIXME check that upper and lower part are 0:
154     //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
155   }
156   VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
157   VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
158   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
159   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
160 
161   // Test computation of eigenvalues from tridiagonal matrix
162   if(rows > 1)
163   {
164     SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
165     eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors);
166     VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
167     VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose());
168   }
169 
170   if (rows > 1 && rows < 20)
171   {
172     // Test matrix with NaN
173     symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
174     SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
175     VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
176   }
177 
178   // regression test for bug 1098
179   {
180     SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a);
181     eig.compute(a.adjoint() * a);
182   }
183 
184   // regression test for bug 478
185   {
186     a.setZero();
187     SelfAdjointEigenSolver<MatrixType> ei3(a);
188     VERIFY_IS_EQUAL(ei3.info(), Success);
189     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
190     VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
191   }
192 }
193 
194 template<int>
bug_854()195 void bug_854()
196 {
197   Matrix3d m;
198   m << 850.961, 51.966, 0,
199        51.966, 254.841, 0,
200             0,       0, 0;
201   selfadjointeigensolver_essential_check(m);
202 }
203 
204 template<int>
bug_1014()205 void bug_1014()
206 {
207   Matrix3d m;
208   m <<        0.11111111111111114658, 0, 0,
209        0,     0.11111111111111109107, 0,
210        0, 0,  0.11111111111111107719;
211   selfadjointeigensolver_essential_check(m);
212 }
213 
214 template<int>
bug_1225()215 void bug_1225()
216 {
217   Matrix3d m1, m2;
218   m1.setRandom();
219   m1 = m1*m1.transpose();
220   m2 = m1.triangularView<Upper>();
221   SelfAdjointEigenSolver<Matrix3d> eig1(m1);
222   SelfAdjointEigenSolver<Matrix3d> eig2(m2.selfadjointView<Upper>());
223   VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
224 }
225 
226 template<int>
bug_1204()227 void bug_1204()
228 {
229   SparseMatrix<double> A(2,2);
230   A.setIdentity();
231   SelfAdjointEigenSolver<Eigen::SparseMatrix<double> > eig(A);
232 }
233 
test_eigensolver_selfadjoint()234 void test_eigensolver_selfadjoint()
235 {
236   int s = 0;
237   for(int i = 0; i < g_repeat; i++) {
238     // trivial test for 1x1 matrices:
239     CALL_SUBTEST_1( selfadjointeigensolver(Matrix<float, 1, 1>()));
240     CALL_SUBTEST_1( selfadjointeigensolver(Matrix<double, 1, 1>()));
241     // very important to test 3x3 and 2x2 matrices since we provide special paths for them
242     CALL_SUBTEST_12( selfadjointeigensolver(Matrix2f()) );
243     CALL_SUBTEST_12( selfadjointeigensolver(Matrix2d()) );
244     CALL_SUBTEST_13( selfadjointeigensolver(Matrix3f()) );
245     CALL_SUBTEST_13( selfadjointeigensolver(Matrix3d()) );
246     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
247 
248     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
249     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
250     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
251     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
252     CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
253     TEST_SET_BUT_UNUSED_VARIABLE(s)
254 
255     // some trivial but implementation-wise tricky cases
256     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
257     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
258     CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
259     CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
260   }
261 
262   CALL_SUBTEST_13( bug_854<0>() );
263   CALL_SUBTEST_13( bug_1014<0>() );
264   CALL_SUBTEST_13( bug_1204<0>() );
265   CALL_SUBTEST_13( bug_1225<0>() );
266 
267   // Test problem size constructors
268   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
269   CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
270   CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
271 
272   TEST_SET_BUT_UNUSED_VARIABLE(s)
273 }
274 
275