1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/Geometry>
13 #include <Eigen/LU>
14 #include <Eigen/SVD>
15 
bounded_acos(T v)16 template<typename T> T bounded_acos(T v)
17 {
18   using std::acos;
19   using std::min;
20   using std::max;
21   return acos((max)(T(-1),(min)(v,T(1))));
22 }
23 
check_slerp(const QuatType & q0,const QuatType & q1)24 template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
25 {
26   using std::abs;
27   typedef typename QuatType::Scalar Scalar;
28   typedef AngleAxis<Scalar> AA;
29 
30   Scalar largeEps = test_precision<Scalar>();
31 
32   Scalar theta_tot = AA(q1*q0.inverse()).angle();
33   if(theta_tot>Scalar(EIGEN_PI))
34     theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot;
35   for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
36   {
37     QuatType q = q0.slerp(t,q1);
38     Scalar theta = AA(q*q0.inverse()).angle();
39     VERIFY(abs(q.norm() - 1) < largeEps);
40     if(theta_tot==0)  VERIFY(theta_tot==0);
41     else              VERIFY(abs(theta - t * theta_tot) < largeEps);
42   }
43 }
44 
quaternion(void)45 template<typename Scalar, int Options> void quaternion(void)
46 {
47   /* this test covers the following files:
48      Quaternion.h
49   */
50   using std::abs;
51   typedef Matrix<Scalar,3,1> Vector3;
52   typedef Matrix<Scalar,3,3> Matrix3;
53   typedef Quaternion<Scalar,Options> Quaternionx;
54   typedef AngleAxis<Scalar> AngleAxisx;
55 
56   Scalar largeEps = test_precision<Scalar>();
57   if (internal::is_same<Scalar,float>::value)
58     largeEps = Scalar(1e-3);
59 
60   Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
61 
62   Vector3 v0 = Vector3::Random(),
63           v1 = Vector3::Random(),
64           v2 = Vector3::Random(),
65           v3 = Vector3::Random();
66 
67   Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)),
68           b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
69 
70   // Quaternion: Identity(), setIdentity();
71   Quaternionx q1, q2;
72   q2.setIdentity();
73   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
74   q1.coeffs().setRandom();
75   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
76 
77   // concatenation
78   q1 *= q2;
79 
80   q1 = AngleAxisx(a, v0.normalized());
81   q2 = AngleAxisx(a, v1.normalized());
82 
83   // angular distance
84   Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
85   if (refangle>Scalar(EIGEN_PI))
86     refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle;
87 
88   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
89   {
90     VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
91   }
92 
93   // rotation matrix conversion
94   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
95   VERIFY_IS_APPROX(q1 * q2 * v2,
96     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
97 
98   VERIFY(  (q2*q1).isApprox(q1*q2, largeEps)
99         || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
100 
101   q2 = q1.toRotationMatrix();
102   VERIFY_IS_APPROX(q1*v1,q2*v1);
103 
104   Matrix3 rot1(q1);
105   VERIFY_IS_APPROX(q1*v1,rot1*v1);
106   Quaternionx q3(rot1.transpose()*rot1);
107   VERIFY_IS_APPROX(q3*v1,v1);
108 
109 
110   // angle-axis conversion
111   AngleAxisx aa = AngleAxisx(q1);
112   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
113 
114   // Do not execute the test if the rotation angle is almost zero, or
115   // the rotation axis and v1 are almost parallel.
116   if (abs(aa.angle()) > 5*test_precision<Scalar>()
117       && (aa.axis() - v1.normalized()).norm() < Scalar(1.99)
118       && (aa.axis() + v1.normalized()).norm() < Scalar(1.99))
119   {
120     VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
121   }
122 
123   // from two vector creation
124   VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
125   VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
126   VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
127   if (internal::is_same<Scalar,double>::value)
128   {
129     v3 = (v1.array()+eps).matrix();
130     VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
131     VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
132   }
133 
134   // from two vector creation static function
135   VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
136   VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
137   VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
138   if (internal::is_same<Scalar,double>::value)
139   {
140     v3 = (v1.array()+eps).matrix();
141     VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
142     VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
143   }
144 
145   // inverse and conjugate
146   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
147   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
148 
149   // test casting
150   Quaternion<float> q1f = q1.template cast<float>();
151   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
152   Quaternion<double> q1d = q1.template cast<double>();
153   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
154 
155   // test bug 369 - improper alignment.
156   Quaternionx *q = new Quaternionx;
157   delete q;
158 
159   q1 = Quaternionx::UnitRandom();
160   q2 = Quaternionx::UnitRandom();
161   check_slerp(q1,q2);
162 
163   q1 = AngleAxisx(b, v1.normalized());
164   q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized());
165   check_slerp(q1,q2);
166 
167   q1 = AngleAxisx(b,  v1.normalized());
168   q2 = AngleAxisx(-b, -v1.normalized());
169   check_slerp(q1,q2);
170 
171   q1 = Quaternionx::UnitRandom();
172   q2.coeffs() = -q1.coeffs();
173   check_slerp(q1,q2);
174 }
175 
mapQuaternion(void)176 template<typename Scalar> void mapQuaternion(void){
177   typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
178   typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
179   typedef Map<Quaternion<Scalar> > MQuaternionUA;
180   typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
181   typedef Quaternion<Scalar> Quaternionx;
182   typedef Matrix<Scalar,3,1> Vector3;
183   typedef AngleAxis<Scalar> AngleAxisx;
184 
185   Vector3 v0 = Vector3::Random(),
186           v1 = Vector3::Random();
187   Scalar  a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
188 
189   EIGEN_ALIGN_MAX Scalar array1[4];
190   EIGEN_ALIGN_MAX Scalar array2[4];
191   EIGEN_ALIGN_MAX Scalar array3[4+1];
192   Scalar* array3unaligned = array3+1;
193 
194   MQuaternionA    mq1(array1);
195   MCQuaternionA   mcq1(array1);
196   MQuaternionA    mq2(array2);
197   MQuaternionUA   mq3(array3unaligned);
198   MCQuaternionUA  mcq3(array3unaligned);
199 
200 //  std::cerr << array1 << " " << array2 << " " << array3 << "\n";
201   mq1 = AngleAxisx(a, v0.normalized());
202   mq2 = mq1;
203   mq3 = mq1;
204 
205   Quaternionx q1 = mq1;
206   Quaternionx q2 = mq2;
207   Quaternionx q3 = mq3;
208   Quaternionx q4 = MCQuaternionUA(array3unaligned);
209 
210   VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
211   VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
212   VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
213   #ifdef EIGEN_VECTORIZE
214   if(internal::packet_traits<Scalar>::Vectorizable)
215     VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
216   #endif
217 
218   VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
219   VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
220 
221   VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
222   VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
223 
224   VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
225   VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
226 
227   VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
228   VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
229 
230   VERIFY_IS_APPROX(mq1*mq2, q1*q2);
231   VERIFY_IS_APPROX(mq3*mq2, q3*q2);
232   VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
233   VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
234 }
235 
quaternionAlignment(void)236 template<typename Scalar> void quaternionAlignment(void){
237   typedef Quaternion<Scalar,AutoAlign> QuaternionA;
238   typedef Quaternion<Scalar,DontAlign> QuaternionUA;
239 
240   EIGEN_ALIGN_MAX Scalar array1[4];
241   EIGEN_ALIGN_MAX Scalar array2[4];
242   EIGEN_ALIGN_MAX Scalar array3[4+1];
243   Scalar* arrayunaligned = array3+1;
244 
245   QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
246   QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
247   QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
248 
249   q1->coeffs().setRandom();
250   *q2 = *q1;
251   *q3 = *q1;
252 
253   VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
254   VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
255   #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
256   if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
257     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
258   #endif
259 }
260 
check_const_correctness(const PlainObjectType &)261 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
262 {
263   // there's a lot that we can't test here while still having this test compile!
264   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
265   // CMake can help with that.
266 
267   // verify that map-to-const don't have LvalueBit
268   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
269   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
270   VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
271   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
272   VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
273 }
274 
test_geo_quaternion()275 void test_geo_quaternion()
276 {
277   for(int i = 0; i < g_repeat; i++) {
278     CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
279     CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
280     CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
281     CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
282     CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
283     CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
284     CALL_SUBTEST_5(( quaternionAlignment<float>() ));
285     CALL_SUBTEST_6(( quaternionAlignment<double>() ));
286     CALL_SUBTEST_1( mapQuaternion<float>() );
287     CALL_SUBTEST_2( mapQuaternion<double>() );
288   }
289 }
290