1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 // discard stack allocation as that too bypasses malloc
12 #define EIGEN_STACK_ALLOCATION_LIMIT 0
13 // heap allocation will raise an assert if enabled at runtime
14 #define EIGEN_RUNTIME_NO_MALLOC
15
16 #include "main.h"
17 #include <Eigen/Cholesky>
18 #include <Eigen/Eigenvalues>
19 #include <Eigen/LU>
20 #include <Eigen/QR>
21 #include <Eigen/SVD>
22
nomalloc(const MatrixType & m)23 template<typename MatrixType> void nomalloc(const MatrixType& m)
24 {
25 /* this test check no dynamic memory allocation are issued with fixed-size matrices
26 */
27 typedef typename MatrixType::Index Index;
28 typedef typename MatrixType::Scalar Scalar;
29
30 Index rows = m.rows();
31 Index cols = m.cols();
32
33 MatrixType m1 = MatrixType::Random(rows, cols),
34 m2 = MatrixType::Random(rows, cols),
35 m3(rows, cols);
36
37 Scalar s1 = internal::random<Scalar>();
38
39 Index r = internal::random<Index>(0, rows-1),
40 c = internal::random<Index>(0, cols-1);
41
42 VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
43 VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
44 VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
45 VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
46
47 m2.col(0).noalias() = m1 * m1.col(0);
48 m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
49 m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
50 m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
51
52 m2.row(0).noalias() = m1.row(0) * m1;
53 m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
54 m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
55 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
56 VERIFY_IS_APPROX(m2,m2);
57
58 m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
59 m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
60 m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
61 m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
62
63 m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
64 m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
65 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
66 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
67 VERIFY_IS_APPROX(m2,m2);
68
69 m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
70 m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
71 m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
72 m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
73
74 m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
75 m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
76 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
77 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
78 VERIFY_IS_APPROX(m2,m2);
79
80 m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
81 m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1);
82 m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2
83
84 // The following fancy matrix-matrix products are not safe yet regarding static allocation
85 m2.template selfadjointView<Lower>().rankUpdate(m1);
86 m2 += m2.template triangularView<Upper>() * m1;
87 m2.template triangularView<Upper>() = m2 * m2;
88 m1 += m1.template selfadjointView<Lower>() * m2;
89 VERIFY_IS_APPROX(m2,m2);
90 }
91
92 template<typename Scalar>
ctms_decompositions()93 void ctms_decompositions()
94 {
95 const int maxSize = 16;
96 const int size = 12;
97
98 typedef Eigen::Matrix<Scalar,
99 Eigen::Dynamic, Eigen::Dynamic,
100 0,
101 maxSize, maxSize> Matrix;
102
103 typedef Eigen::Matrix<Scalar,
104 Eigen::Dynamic, 1,
105 0,
106 maxSize, 1> Vector;
107
108 typedef Eigen::Matrix<std::complex<Scalar>,
109 Eigen::Dynamic, Eigen::Dynamic,
110 0,
111 maxSize, maxSize> ComplexMatrix;
112
113 const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
114 Matrix X(size,size);
115 const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
116 const Matrix saA = A.adjoint() * A;
117 const Vector b(Vector::Random(size));
118 Vector x(size);
119
120 // Cholesky module
121 Eigen::LLT<Matrix> LLT; LLT.compute(A);
122 X = LLT.solve(B);
123 x = LLT.solve(b);
124 Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
125 X = LDLT.solve(B);
126 x = LDLT.solve(b);
127
128 // Eigenvalues module
129 Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
130 Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
131 Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; cEigSolver.compute(complexA);
132 Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
133 Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
134 Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
135
136 // LU module
137 Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
138 X = ppLU.solve(B);
139 x = ppLU.solve(b);
140 Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
141 X = fpLU.solve(B);
142 x = fpLU.solve(b);
143
144 // QR module
145 Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
146 X = hQR.solve(B);
147 x = hQR.solve(b);
148 Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
149 X = cpQR.solve(B);
150 x = cpQR.solve(b);
151 Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
152 // FIXME X = fpQR.solve(B);
153 x = fpQR.solve(b);
154
155 // SVD module
156 Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
157 }
158
test_zerosized()159 void test_zerosized() {
160 // default constructors:
161 Eigen::MatrixXd A;
162 Eigen::VectorXd v;
163 // explicit zero-sized:
164 Eigen::ArrayXXd A0(0,0);
165 Eigen::ArrayXd v0(0);
166
167 // assigning empty objects to each other:
168 A=A0;
169 v=v0;
170 }
171
test_reference(const MatrixType & m)172 template<typename MatrixType> void test_reference(const MatrixType& m) {
173 typedef typename MatrixType::Scalar Scalar;
174 enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
175 enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
176 typename MatrixType::Index rows = m.rows(), cols=m.cols();
177 typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag > MatrixX;
178 typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
179 // Dynamic reference:
180 typedef Eigen::Ref<const MatrixX > Ref;
181 typedef Eigen::Ref<const MatrixXT > RefT;
182
183 Ref r1(m);
184 Ref r2(m.block(rows/3, cols/4, rows/2, cols/2));
185 RefT r3(m.transpose());
186 RefT r4(m.topLeftCorner(rows/2, cols/2).transpose());
187
188 VERIFY_RAISES_ASSERT(RefT r5(m));
189 VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
190 VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
191
192 // Copy constructors shall also never malloc
193 Ref r8 = r1;
194 RefT r9 = r3;
195
196 // Initializing from a compatible Ref shall also never malloc
197 Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m;
198
199 // Initializing from an incompatible Ref will malloc:
200 typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
201 VERIFY_RAISES_ASSERT(RefAligned r12=r10);
202 VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides
203
204 }
205
test_nomalloc()206 void test_nomalloc()
207 {
208 // create some dynamic objects
209 Eigen::MatrixXd M1 = MatrixXd::Random(3,3);
210 Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary
211
212 // from here on prohibit malloc:
213 Eigen::internal::set_is_malloc_allowed(false);
214
215 // check that our operator new is indeed called:
216 VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
217 CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
218 CALL_SUBTEST_2(nomalloc(Matrix4d()) );
219 CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
220
221 // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
222 CALL_SUBTEST_4(ctms_decompositions<float>());
223
224 CALL_SUBTEST_5(test_zerosized());
225
226 CALL_SUBTEST_6(test_reference(Matrix<float,32,32>()));
227 CALL_SUBTEST_7(test_reference(R1));
228 CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
229 }
230