1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
6 //
7 // This code initially comes from MINPACK whose original authors are:
8 // Copyright Jorge More - Argonne National Laboratory
9 // Copyright Burt Garbow - Argonne National Laboratory
10 // Copyright Ken Hillstrom - Argonne National Laboratory
11 //
12 // This Source Code Form is subject to the terms of the Minpack license
13 // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
14 
15 #ifndef EIGEN_LMQRSOLV_H
16 #define EIGEN_LMQRSOLV_H
17 
18 namespace Eigen {
19 
20 namespace internal {
21 
22 template <typename Scalar,int Rows, int Cols, typename PermIndex>
lmqrsolv(Matrix<Scalar,Rows,Cols> & s,const PermutationMatrix<Dynamic,Dynamic,PermIndex> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)23 void lmqrsolv(
24   Matrix<Scalar,Rows,Cols> &s,
25   const PermutationMatrix<Dynamic,Dynamic,PermIndex> &iPerm,
26   const Matrix<Scalar,Dynamic,1> &diag,
27   const Matrix<Scalar,Dynamic,1> &qtb,
28   Matrix<Scalar,Dynamic,1> &x,
29   Matrix<Scalar,Dynamic,1> &sdiag)
30 {
31     /* Local variables */
32     Index i, j, k;
33     Scalar temp;
34     Index n = s.cols();
35     Matrix<Scalar,Dynamic,1>  wa(n);
36     JacobiRotation<Scalar> givens;
37 
38     /* Function Body */
39     // the following will only change the lower triangular part of s, including
40     // the diagonal, though the diagonal is restored afterward
41 
42     /*     copy r and (q transpose)*b to preserve input and initialize s. */
43     /*     in particular, save the diagonal elements of r in x. */
44     x = s.diagonal();
45     wa = qtb;
46 
47 
48     s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
49     /*     eliminate the diagonal matrix d using a givens rotation. */
50     for (j = 0; j < n; ++j) {
51 
52         /*        prepare the row of d to be eliminated, locating the */
53         /*        diagonal element using p from the qr factorization. */
54         const PermIndex l = iPerm.indices()(j);
55         if (diag[l] == 0.)
56             break;
57         sdiag.tail(n-j).setZero();
58         sdiag[j] = diag[l];
59 
60         /*        the transformations to eliminate the row of d */
61         /*        modify only a single element of (q transpose)*b */
62         /*        beyond the first n, which is initially zero. */
63         Scalar qtbpj = 0.;
64         for (k = j; k < n; ++k) {
65             /*           determine a givens rotation which eliminates the */
66             /*           appropriate element in the current row of d. */
67             givens.makeGivens(-s(k,k), sdiag[k]);
68 
69             /*           compute the modified diagonal element of r and */
70             /*           the modified element of ((q transpose)*b,0). */
71             s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
72             temp = givens.c() * wa[k] + givens.s() * qtbpj;
73             qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
74             wa[k] = temp;
75 
76             /*           accumulate the tranformation in the row of s. */
77             for (i = k+1; i<n; ++i) {
78                 temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
79                 sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
80                 s(i,k) = temp;
81             }
82         }
83     }
84 
85     /*     solve the triangular system for z. if the system is */
86     /*     singular, then obtain a least squares solution. */
87     Index nsing;
88     for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
89 
90     wa.tail(n-nsing).setZero();
91     s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
92 
93     // restore
94     sdiag = s.diagonal();
95     s.diagonal() = x;
96 
97     /* permute the components of z back to components of x. */
98     x = iPerm * wa;
99 }
100 
101 template <typename Scalar, int _Options, typename Index>
lmqrsolv(SparseMatrix<Scalar,_Options,Index> & s,const PermutationMatrix<Dynamic,Dynamic> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)102 void lmqrsolv(
103   SparseMatrix<Scalar,_Options,Index> &s,
104   const PermutationMatrix<Dynamic,Dynamic> &iPerm,
105   const Matrix<Scalar,Dynamic,1> &diag,
106   const Matrix<Scalar,Dynamic,1> &qtb,
107   Matrix<Scalar,Dynamic,1> &x,
108   Matrix<Scalar,Dynamic,1> &sdiag)
109 {
110   /* Local variables */
111   typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
112     Index i, j, k, l;
113     Scalar temp;
114     Index n = s.cols();
115     Matrix<Scalar,Dynamic,1>  wa(n);
116     JacobiRotation<Scalar> givens;
117 
118     /* Function Body */
119     // the following will only change the lower triangular part of s, including
120     // the diagonal, though the diagonal is restored afterward
121 
122     /*     copy r and (q transpose)*b to preserve input and initialize R. */
123     wa = qtb;
124     FactorType R(s);
125     // Eliminate the diagonal matrix d using a givens rotation
126     for (j = 0; j < n; ++j)
127     {
128       // Prepare the row of d to be eliminated, locating the
129       // diagonal element using p from the qr factorization
130       l = iPerm.indices()(j);
131       if (diag(l) == Scalar(0))
132         break;
133       sdiag.tail(n-j).setZero();
134       sdiag[j] = diag[l];
135       // the transformations to eliminate the row of d
136       // modify only a single element of (q transpose)*b
137       // beyond the first n, which is initially zero.
138 
139       Scalar qtbpj = 0;
140       // Browse the nonzero elements of row j of the upper triangular s
141       for (k = j; k < n; ++k)
142       {
143         typename FactorType::InnerIterator itk(R,k);
144         for (; itk; ++itk){
145           if (itk.index() < k) continue;
146           else break;
147         }
148         //At this point, we have the diagonal element R(k,k)
149         // Determine a givens rotation which eliminates
150         // the appropriate element in the current row of d
151         givens.makeGivens(-itk.value(), sdiag(k));
152 
153         // Compute the modified diagonal element of r and
154         // the modified element of ((q transpose)*b,0).
155         itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
156         temp = givens.c() * wa(k) + givens.s() * qtbpj;
157         qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
158         wa(k) = temp;
159 
160         // Accumulate the transformation in the remaining k row/column of R
161         for (++itk; itk; ++itk)
162         {
163           i = itk.index();
164           temp = givens.c() *  itk.value() + givens.s() * sdiag(i);
165           sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
166           itk.valueRef() = temp;
167         }
168       }
169     }
170 
171     // Solve the triangular system for z. If the system is
172     // singular, then obtain a least squares solution
173     Index nsing;
174     for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
175 
176     wa.tail(n-nsing).setZero();
177 //     x = wa;
178     wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
179 
180     sdiag = R.diagonal();
181     // Permute the components of z back to components of x
182     x = iPerm * wa;
183 }
184 } // end namespace internal
185 
186 } // end namespace Eigen
187 
188 #endif // EIGEN_LMQRSOLV_H
189