1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
12 #define EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal \returns the arcsin of \a a (coeff-wise) */
pasin(Packet a)19 template<typename Packet> inline static Packet pasin(Packet a) { return std::asin(a); }
20 
21 #ifdef EIGEN_VECTORIZE_SSE
22 
pasin(Packet4f x)23 template<> EIGEN_DONT_INLINE Packet4f pasin(Packet4f x)
24 {
25   _EIGEN_DECLARE_CONST_Packet4f(half, 0.5);
26   _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5);
27   _EIGEN_DECLARE_CONST_Packet4f(3half, 1.5);
28 
29   _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
30 
31   _EIGEN_DECLARE_CONST_Packet4f(pi, 3.141592654);
32   _EIGEN_DECLARE_CONST_Packet4f(pi_over_2, 3.141592654*0.5);
33 
34   _EIGEN_DECLARE_CONST_Packet4f(asin1, 4.2163199048E-2);
35   _EIGEN_DECLARE_CONST_Packet4f(asin2, 2.4181311049E-2);
36   _EIGEN_DECLARE_CONST_Packet4f(asin3, 4.5470025998E-2);
37   _EIGEN_DECLARE_CONST_Packet4f(asin4, 7.4953002686E-2);
38   _EIGEN_DECLARE_CONST_Packet4f(asin5, 1.6666752422E-1);
39 
40   Packet4f a = pabs(x);//got the absolute value
41 
42   Packet4f sign_bit= _mm_and_ps(x, p4f_sign_mask);//extracted the sign bit
43 
44   Packet4f z1,z2;//will need them during computation
45 
46 
47 //will compute the two branches for asin
48 //so first compare with half
49 
50   Packet4f branch_mask= _mm_cmpgt_ps(a, p4f_half);//this is to select which branch to take
51 //both will be taken, and finally results will be merged
52 //the branch for values >0.5
53 
54     {
55 //the core series expansion
56     z1=pmadd(p4f_minus_half,a,p4f_half);
57     Packet4f x1=psqrt(z1);
58     Packet4f s1=pmadd(p4f_asin1, z1, p4f_asin2);
59     Packet4f s2=pmadd(s1, z1, p4f_asin3);
60     Packet4f s3=pmadd(s2,z1, p4f_asin4);
61     Packet4f s4=pmadd(s3,z1, p4f_asin5);
62     Packet4f temp=pmul(s4,z1);//not really a madd but a mul by z so that the next term can be a madd
63     z1=pmadd(temp,x1,x1);
64     z1=padd(z1,z1);
65     z1=psub(p4f_pi_over_2,z1);
66     }
67 
68     {
69 //the core series expansion
70     Packet4f x2=a;
71     z2=pmul(x2,x2);
72     Packet4f s1=pmadd(p4f_asin1, z2, p4f_asin2);
73     Packet4f s2=pmadd(s1, z2, p4f_asin3);
74     Packet4f s3=pmadd(s2,z2, p4f_asin4);
75     Packet4f s4=pmadd(s3,z2, p4f_asin5);
76     Packet4f temp=pmul(s4,z2);//not really a madd but a mul by z so that the next term can be a madd
77     z2=pmadd(temp,x2,x2);
78     }
79 
80 /* select the correct result from the two branch evaluations */
81   z1  = _mm_and_ps(branch_mask, z1);
82   z2  = _mm_andnot_ps(branch_mask, z2);
83   Packet4f z  = _mm_or_ps(z1,z2);
84 
85 /* update the sign */
86   return _mm_xor_ps(z, sign_bit);
87 }
88 
89 #endif // EIGEN_VECTORIZE_SSE
90 
91 } // end namespace internal
92 
93 } // end namespace Eigen
94 
95 #endif // EIGEN_MOREVECTORIZATION_MATHFUNCTIONS_H
96