1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <limits>
12 #include <numeric>
13 #include <Eigen/CXX11/Tensor>
14
15 using Eigen::Tensor;
16
17 template <int DataLayout>
test_trivial_reductions()18 static void test_trivial_reductions() {
19 {
20 Tensor<float, 0, DataLayout> tensor;
21 tensor.setRandom();
22 array<ptrdiff_t, 0> reduction_axis;
23
24 Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
25 VERIFY_IS_EQUAL(result(), tensor());
26 }
27
28 {
29 Tensor<float, 1, DataLayout> tensor(7);
30 tensor.setRandom();
31 array<ptrdiff_t, 0> reduction_axis;
32
33 Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis);
34 VERIFY_IS_EQUAL(result.dimension(0), 7);
35 for (int i = 0; i < 7; ++i) {
36 VERIFY_IS_EQUAL(result(i), tensor(i));
37 }
38 }
39
40 {
41 Tensor<float, 2, DataLayout> tensor(2, 3);
42 tensor.setRandom();
43 array<ptrdiff_t, 0> reduction_axis;
44
45 Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis);
46 VERIFY_IS_EQUAL(result.dimension(0), 2);
47 VERIFY_IS_EQUAL(result.dimension(1), 3);
48 for (int i = 0; i < 2; ++i) {
49 for (int j = 0; j < 3; ++j) {
50 VERIFY_IS_EQUAL(result(i, j), tensor(i, j));
51 }
52 }
53 }
54 }
55
56 template <int DataLayout>
test_simple_reductions()57 static void test_simple_reductions() {
58 Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
59 tensor.setRandom();
60 array<ptrdiff_t, 2> reduction_axis2;
61 reduction_axis2[0] = 1;
62 reduction_axis2[1] = 3;
63
64 Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2);
65 VERIFY_IS_EQUAL(result.dimension(0), 2);
66 VERIFY_IS_EQUAL(result.dimension(1), 5);
67 for (int i = 0; i < 2; ++i) {
68 for (int j = 0; j < 5; ++j) {
69 float sum = 0.0f;
70 for (int k = 0; k < 3; ++k) {
71 for (int l = 0; l < 7; ++l) {
72 sum += tensor(i, k, j, l);
73 }
74 }
75 VERIFY_IS_APPROX(result(i, j), sum);
76 }
77 }
78
79 {
80 Tensor<float, 0, DataLayout> sum1 = tensor.sum();
81 VERIFY_IS_EQUAL(sum1.rank(), 0);
82
83 array<ptrdiff_t, 4> reduction_axis4;
84 reduction_axis4[0] = 0;
85 reduction_axis4[1] = 1;
86 reduction_axis4[2] = 2;
87 reduction_axis4[3] = 3;
88 Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4);
89 VERIFY_IS_EQUAL(sum2.rank(), 0);
90
91 VERIFY_IS_APPROX(sum1(), sum2());
92 }
93
94 reduction_axis2[0] = 0;
95 reduction_axis2[1] = 2;
96 result = tensor.prod(reduction_axis2);
97 VERIFY_IS_EQUAL(result.dimension(0), 3);
98 VERIFY_IS_EQUAL(result.dimension(1), 7);
99 for (int i = 0; i < 3; ++i) {
100 for (int j = 0; j < 7; ++j) {
101 float prod = 1.0f;
102 for (int k = 0; k < 2; ++k) {
103 for (int l = 0; l < 5; ++l) {
104 prod *= tensor(k, i, l, j);
105 }
106 }
107 VERIFY_IS_APPROX(result(i, j), prod);
108 }
109 }
110
111 {
112 Tensor<float, 0, DataLayout> prod1 = tensor.prod();
113 VERIFY_IS_EQUAL(prod1.rank(), 0);
114
115 array<ptrdiff_t, 4> reduction_axis4;
116 reduction_axis4[0] = 0;
117 reduction_axis4[1] = 1;
118 reduction_axis4[2] = 2;
119 reduction_axis4[3] = 3;
120 Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4);
121 VERIFY_IS_EQUAL(prod2.rank(), 0);
122
123 VERIFY_IS_APPROX(prod1(), prod2());
124 }
125
126 reduction_axis2[0] = 0;
127 reduction_axis2[1] = 2;
128 result = tensor.maximum(reduction_axis2);
129 VERIFY_IS_EQUAL(result.dimension(0), 3);
130 VERIFY_IS_EQUAL(result.dimension(1), 7);
131 for (int i = 0; i < 3; ++i) {
132 for (int j = 0; j < 7; ++j) {
133 float max_val = std::numeric_limits<float>::lowest();
134 for (int k = 0; k < 2; ++k) {
135 for (int l = 0; l < 5; ++l) {
136 max_val = (std::max)(max_val, tensor(k, i, l, j));
137 }
138 }
139 VERIFY_IS_APPROX(result(i, j), max_val);
140 }
141 }
142
143 {
144 Tensor<float, 0, DataLayout> max1 = tensor.maximum();
145 VERIFY_IS_EQUAL(max1.rank(), 0);
146
147 array<ptrdiff_t, 4> reduction_axis4;
148 reduction_axis4[0] = 0;
149 reduction_axis4[1] = 1;
150 reduction_axis4[2] = 2;
151 reduction_axis4[3] = 3;
152 Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4);
153 VERIFY_IS_EQUAL(max2.rank(), 0);
154
155 VERIFY_IS_APPROX(max1(), max2());
156 }
157
158 reduction_axis2[0] = 0;
159 reduction_axis2[1] = 1;
160 result = tensor.minimum(reduction_axis2);
161 VERIFY_IS_EQUAL(result.dimension(0), 5);
162 VERIFY_IS_EQUAL(result.dimension(1), 7);
163 for (int i = 0; i < 5; ++i) {
164 for (int j = 0; j < 7; ++j) {
165 float min_val = (std::numeric_limits<float>::max)();
166 for (int k = 0; k < 2; ++k) {
167 for (int l = 0; l < 3; ++l) {
168 min_val = (std::min)(min_val, tensor(k, l, i, j));
169 }
170 }
171 VERIFY_IS_APPROX(result(i, j), min_val);
172 }
173 }
174
175 {
176 Tensor<float, 0, DataLayout> min1 = tensor.minimum();
177 VERIFY_IS_EQUAL(min1.rank(), 0);
178
179 array<ptrdiff_t, 4> reduction_axis4;
180 reduction_axis4[0] = 0;
181 reduction_axis4[1] = 1;
182 reduction_axis4[2] = 2;
183 reduction_axis4[3] = 3;
184 Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4);
185 VERIFY_IS_EQUAL(min2.rank(), 0);
186
187 VERIFY_IS_APPROX(min1(), min2());
188 }
189
190 reduction_axis2[0] = 0;
191 reduction_axis2[1] = 1;
192 result = tensor.mean(reduction_axis2);
193 VERIFY_IS_EQUAL(result.dimension(0), 5);
194 VERIFY_IS_EQUAL(result.dimension(1), 7);
195 for (int i = 0; i < 5; ++i) {
196 for (int j = 0; j < 7; ++j) {
197 float sum = 0.0f;
198 int count = 0;
199 for (int k = 0; k < 2; ++k) {
200 for (int l = 0; l < 3; ++l) {
201 sum += tensor(k, l, i, j);
202 ++count;
203 }
204 }
205 VERIFY_IS_APPROX(result(i, j), sum / count);
206 }
207 }
208
209 {
210 Tensor<float, 0, DataLayout> mean1 = tensor.mean();
211 VERIFY_IS_EQUAL(mean1.rank(), 0);
212
213 array<ptrdiff_t, 4> reduction_axis4;
214 reduction_axis4[0] = 0;
215 reduction_axis4[1] = 1;
216 reduction_axis4[2] = 2;
217 reduction_axis4[3] = 3;
218 Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4);
219 VERIFY_IS_EQUAL(mean2.rank(), 0);
220
221 VERIFY_IS_APPROX(mean1(), mean2());
222 }
223
224 {
225 Tensor<int, 1> ints(10);
226 std::iota(ints.data(), ints.data() + ints.dimension(0), 0);
227
228 TensorFixedSize<bool, Sizes<> > all;
229 all = ints.all();
230 VERIFY(!all());
231 all = (ints >= ints.constant(0)).all();
232 VERIFY(all());
233
234 TensorFixedSize<bool, Sizes<> > any;
235 any = (ints > ints.constant(10)).any();
236 VERIFY(!any());
237 any = (ints < ints.constant(1)).any();
238 VERIFY(any());
239 }
240 }
241
242
243 template <int DataLayout>
test_reductions_in_expr()244 static void test_reductions_in_expr() {
245 Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
246 tensor.setRandom();
247 array<ptrdiff_t, 2> reduction_axis2;
248 reduction_axis2[0] = 1;
249 reduction_axis2[1] = 3;
250
251 Tensor<float, 2, DataLayout> result(2, 5);
252 result = result.constant(1.0f) - tensor.sum(reduction_axis2);
253 VERIFY_IS_EQUAL(result.dimension(0), 2);
254 VERIFY_IS_EQUAL(result.dimension(1), 5);
255 for (int i = 0; i < 2; ++i) {
256 for (int j = 0; j < 5; ++j) {
257 float sum = 0.0f;
258 for (int k = 0; k < 3; ++k) {
259 for (int l = 0; l < 7; ++l) {
260 sum += tensor(i, k, j, l);
261 }
262 }
263 VERIFY_IS_APPROX(result(i, j), 1.0f - sum);
264 }
265 }
266 }
267
268
269 template <int DataLayout>
test_full_reductions()270 static void test_full_reductions() {
271 Tensor<float, 2, DataLayout> tensor(2, 3);
272 tensor.setRandom();
273 array<ptrdiff_t, 2> reduction_axis;
274 reduction_axis[0] = 0;
275 reduction_axis[1] = 1;
276
277 Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
278 VERIFY_IS_EQUAL(result.rank(), 0);
279
280 float sum = 0.0f;
281 for (int i = 0; i < 2; ++i) {
282 for (int j = 0; j < 3; ++j) {
283 sum += tensor(i, j);
284 }
285 }
286 VERIFY_IS_APPROX(result(0), sum);
287
288 result = tensor.square().sum(reduction_axis).sqrt();
289 VERIFY_IS_EQUAL(result.rank(), 0);
290
291 sum = 0.0f;
292 for (int i = 0; i < 2; ++i) {
293 for (int j = 0; j < 3; ++j) {
294 sum += tensor(i, j) * tensor(i, j);
295 }
296 }
297 VERIFY_IS_APPROX(result(), sqrtf(sum));
298 }
299
300 struct UserReducer {
301 static const bool PacketAccess = false;
UserReducerUserReducer302 UserReducer(float offset) : offset_(offset) {}
reduceUserReducer303 void reduce(const float val, float* accum) { *accum += val * val; }
initializeUserReducer304 float initialize() const { return 0; }
finalizeUserReducer305 float finalize(const float accum) const { return 1.0f / (accum + offset_); }
306
307 private:
308 const float offset_;
309 };
310
311 template <int DataLayout>
test_user_defined_reductions()312 static void test_user_defined_reductions() {
313 Tensor<float, 2, DataLayout> tensor(5, 7);
314 tensor.setRandom();
315 array<ptrdiff_t, 1> reduction_axis;
316 reduction_axis[0] = 1;
317
318 UserReducer reducer(10.0f);
319 Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer);
320 VERIFY_IS_EQUAL(result.dimension(0), 5);
321 for (int i = 0; i < 5; ++i) {
322 float expected = 10.0f;
323 for (int j = 0; j < 7; ++j) {
324 expected += tensor(i, j) * tensor(i, j);
325 }
326 expected = 1.0f / expected;
327 VERIFY_IS_APPROX(result(i), expected);
328 }
329 }
330
331 template <int DataLayout>
test_tensor_maps()332 static void test_tensor_maps() {
333 int inputs[2 * 3 * 5 * 7];
334 TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7);
335 TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5,
336 7);
337 const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const(
338 inputs, 2, 3, 5, 7);
339
340 tensor_map.setRandom();
341 array<ptrdiff_t, 2> reduction_axis;
342 reduction_axis[0] = 1;
343 reduction_axis[1] = 3;
344
345 Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis);
346 Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis);
347 Tensor<int, 2, DataLayout> result3 =
348 tensor_map_const_const.sum(reduction_axis);
349
350 for (int i = 0; i < 2; ++i) {
351 for (int j = 0; j < 5; ++j) {
352 int sum = 0;
353 for (int k = 0; k < 3; ++k) {
354 for (int l = 0; l < 7; ++l) {
355 sum += tensor_map(i, k, j, l);
356 }
357 }
358 VERIFY_IS_EQUAL(result(i, j), sum);
359 VERIFY_IS_EQUAL(result2(i, j), sum);
360 VERIFY_IS_EQUAL(result3(i, j), sum);
361 }
362 }
363 }
364
365 template <int DataLayout>
test_static_dims()366 static void test_static_dims() {
367 Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
368 Tensor<float, 2, DataLayout> out(72, 97);
369 in.setRandom();
370
371 #if !EIGEN_HAS_CONSTEXPR
372 array<int, 2> reduction_axis;
373 reduction_axis[0] = 1;
374 reduction_axis[1] = 3;
375 #else
376 Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
377 #endif
378
379 out = in.maximum(reduction_axis);
380
381 for (int i = 0; i < 72; ++i) {
382 for (int j = 0; j < 97; ++j) {
383 float expected = -1e10f;
384 for (int k = 0; k < 53; ++k) {
385 for (int l = 0; l < 113; ++l) {
386 expected = (std::max)(expected, in(i, k, j, l));
387 }
388 }
389 VERIFY_IS_APPROX(out(i, j), expected);
390 }
391 }
392 }
393
394 template <int DataLayout>
test_innermost_last_dims()395 static void test_innermost_last_dims() {
396 Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
397 Tensor<float, 2, DataLayout> out(97, 113);
398 in.setRandom();
399
400 // Reduce on the innermost dimensions.
401 #if !EIGEN_HAS_CONSTEXPR
402 array<int, 2> reduction_axis;
403 reduction_axis[0] = 0;
404 reduction_axis[1] = 1;
405 #else
406 // This triggers the use of packets for ColMajor.
407 Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
408 #endif
409
410 out = in.maximum(reduction_axis);
411
412 for (int i = 0; i < 97; ++i) {
413 for (int j = 0; j < 113; ++j) {
414 float expected = -1e10f;
415 for (int k = 0; k < 53; ++k) {
416 for (int l = 0; l < 72; ++l) {
417 expected = (std::max)(expected, in(l, k, i, j));
418 }
419 }
420 VERIFY_IS_APPROX(out(i, j), expected);
421 }
422 }
423 }
424
425 template <int DataLayout>
test_innermost_first_dims()426 static void test_innermost_first_dims() {
427 Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
428 Tensor<float, 2, DataLayout> out(72, 53);
429 in.setRandom();
430
431 // Reduce on the innermost dimensions.
432 #if !EIGEN_HAS_CONSTEXPR
433 array<int, 2> reduction_axis;
434 reduction_axis[0] = 2;
435 reduction_axis[1] = 3;
436 #else
437 // This triggers the use of packets for RowMajor.
438 Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
439 #endif
440
441 out = in.maximum(reduction_axis);
442
443 for (int i = 0; i < 72; ++i) {
444 for (int j = 0; j < 53; ++j) {
445 float expected = -1e10f;
446 for (int k = 0; k < 97; ++k) {
447 for (int l = 0; l < 113; ++l) {
448 expected = (std::max)(expected, in(i, j, k, l));
449 }
450 }
451 VERIFY_IS_APPROX(out(i, j), expected);
452 }
453 }
454 }
455
456 template <int DataLayout>
test_reduce_middle_dims()457 static void test_reduce_middle_dims() {
458 Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
459 Tensor<float, 2, DataLayout> out(72, 53);
460 in.setRandom();
461
462 // Reduce on the innermost dimensions.
463 #if !EIGEN_HAS_CONSTEXPR
464 array<int, 2> reduction_axis;
465 reduction_axis[0] = 1;
466 reduction_axis[1] = 2;
467 #else
468 // This triggers the use of packets for RowMajor.
469 Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
470 #endif
471
472 out = in.maximum(reduction_axis);
473
474 for (int i = 0; i < 72; ++i) {
475 for (int j = 0; j < 113; ++j) {
476 float expected = -1e10f;
477 for (int k = 0; k < 53; ++k) {
478 for (int l = 0; l < 97; ++l) {
479 expected = (std::max)(expected, in(i, k, l, j));
480 }
481 }
482 VERIFY_IS_APPROX(out(i, j), expected);
483 }
484 }
485 }
486
test_cxx11_tensor_reduction()487 void test_cxx11_tensor_reduction() {
488 CALL_SUBTEST(test_trivial_reductions<ColMajor>());
489 CALL_SUBTEST(test_trivial_reductions<RowMajor>());
490 CALL_SUBTEST(test_simple_reductions<ColMajor>());
491 CALL_SUBTEST(test_simple_reductions<RowMajor>());
492 CALL_SUBTEST(test_reductions_in_expr<ColMajor>());
493 CALL_SUBTEST(test_reductions_in_expr<RowMajor>());
494 CALL_SUBTEST(test_full_reductions<ColMajor>());
495 CALL_SUBTEST(test_full_reductions<RowMajor>());
496 CALL_SUBTEST(test_user_defined_reductions<ColMajor>());
497 CALL_SUBTEST(test_user_defined_reductions<RowMajor>());
498 CALL_SUBTEST(test_tensor_maps<ColMajor>());
499 CALL_SUBTEST(test_tensor_maps<RowMajor>());
500 CALL_SUBTEST(test_static_dims<ColMajor>());
501 CALL_SUBTEST(test_static_dims<RowMajor>());
502 CALL_SUBTEST(test_innermost_last_dims<ColMajor>());
503 CALL_SUBTEST(test_innermost_last_dims<RowMajor>());
504 CALL_SUBTEST(test_innermost_first_dims<ColMajor>());
505 CALL_SUBTEST(test_innermost_first_dims<RowMajor>());
506 CALL_SUBTEST(test_reduce_middle_dims<ColMajor>());
507 CALL_SUBTEST(test_reduce_middle_dims<RowMajor>());
508 }
509