1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <limits>
12 #include <numeric>
13 #include <Eigen/CXX11/Tensor>
14 
15 using Eigen::Tensor;
16 
17 template <int DataLayout>
test_trivial_reductions()18 static void test_trivial_reductions() {
19   {
20     Tensor<float, 0, DataLayout> tensor;
21     tensor.setRandom();
22     array<ptrdiff_t, 0> reduction_axis;
23 
24     Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
25     VERIFY_IS_EQUAL(result(), tensor());
26   }
27 
28   {
29     Tensor<float, 1, DataLayout> tensor(7);
30     tensor.setRandom();
31     array<ptrdiff_t, 0> reduction_axis;
32 
33     Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis);
34     VERIFY_IS_EQUAL(result.dimension(0), 7);
35     for (int i = 0; i < 7; ++i) {
36       VERIFY_IS_EQUAL(result(i), tensor(i));
37     }
38   }
39 
40   {
41     Tensor<float, 2, DataLayout> tensor(2, 3);
42     tensor.setRandom();
43     array<ptrdiff_t, 0> reduction_axis;
44 
45     Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis);
46     VERIFY_IS_EQUAL(result.dimension(0), 2);
47     VERIFY_IS_EQUAL(result.dimension(1), 3);
48     for (int i = 0; i < 2; ++i) {
49       for (int j = 0; j < 3; ++j) {
50         VERIFY_IS_EQUAL(result(i, j), tensor(i, j));
51       }
52     }
53   }
54 }
55 
56 template <int DataLayout>
test_simple_reductions()57 static void test_simple_reductions() {
58   Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
59   tensor.setRandom();
60   array<ptrdiff_t, 2> reduction_axis2;
61   reduction_axis2[0] = 1;
62   reduction_axis2[1] = 3;
63 
64   Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2);
65   VERIFY_IS_EQUAL(result.dimension(0), 2);
66   VERIFY_IS_EQUAL(result.dimension(1), 5);
67   for (int i = 0; i < 2; ++i) {
68     for (int j = 0; j < 5; ++j) {
69       float sum = 0.0f;
70       for (int k = 0; k < 3; ++k) {
71         for (int l = 0; l < 7; ++l) {
72           sum += tensor(i, k, j, l);
73         }
74       }
75       VERIFY_IS_APPROX(result(i, j), sum);
76     }
77   }
78 
79   {
80     Tensor<float, 0, DataLayout> sum1 = tensor.sum();
81     VERIFY_IS_EQUAL(sum1.rank(), 0);
82 
83     array<ptrdiff_t, 4> reduction_axis4;
84     reduction_axis4[0] = 0;
85     reduction_axis4[1] = 1;
86     reduction_axis4[2] = 2;
87     reduction_axis4[3] = 3;
88     Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4);
89     VERIFY_IS_EQUAL(sum2.rank(), 0);
90 
91     VERIFY_IS_APPROX(sum1(), sum2());
92   }
93 
94   reduction_axis2[0] = 0;
95   reduction_axis2[1] = 2;
96   result = tensor.prod(reduction_axis2);
97   VERIFY_IS_EQUAL(result.dimension(0), 3);
98   VERIFY_IS_EQUAL(result.dimension(1), 7);
99   for (int i = 0; i < 3; ++i) {
100     for (int j = 0; j < 7; ++j) {
101       float prod = 1.0f;
102       for (int k = 0; k < 2; ++k) {
103         for (int l = 0; l < 5; ++l) {
104           prod *= tensor(k, i, l, j);
105         }
106       }
107       VERIFY_IS_APPROX(result(i, j), prod);
108     }
109   }
110 
111   {
112     Tensor<float, 0, DataLayout> prod1 = tensor.prod();
113     VERIFY_IS_EQUAL(prod1.rank(), 0);
114 
115     array<ptrdiff_t, 4> reduction_axis4;
116     reduction_axis4[0] = 0;
117     reduction_axis4[1] = 1;
118     reduction_axis4[2] = 2;
119     reduction_axis4[3] = 3;
120     Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4);
121     VERIFY_IS_EQUAL(prod2.rank(), 0);
122 
123     VERIFY_IS_APPROX(prod1(), prod2());
124   }
125 
126   reduction_axis2[0] = 0;
127   reduction_axis2[1] = 2;
128   result = tensor.maximum(reduction_axis2);
129   VERIFY_IS_EQUAL(result.dimension(0), 3);
130   VERIFY_IS_EQUAL(result.dimension(1), 7);
131   for (int i = 0; i < 3; ++i) {
132     for (int j = 0; j < 7; ++j) {
133       float max_val = std::numeric_limits<float>::lowest();
134       for (int k = 0; k < 2; ++k) {
135         for (int l = 0; l < 5; ++l) {
136           max_val = (std::max)(max_val, tensor(k, i, l, j));
137         }
138       }
139       VERIFY_IS_APPROX(result(i, j), max_val);
140     }
141   }
142 
143   {
144     Tensor<float, 0, DataLayout> max1 = tensor.maximum();
145     VERIFY_IS_EQUAL(max1.rank(), 0);
146 
147     array<ptrdiff_t, 4> reduction_axis4;
148     reduction_axis4[0] = 0;
149     reduction_axis4[1] = 1;
150     reduction_axis4[2] = 2;
151     reduction_axis4[3] = 3;
152     Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4);
153     VERIFY_IS_EQUAL(max2.rank(), 0);
154 
155     VERIFY_IS_APPROX(max1(), max2());
156   }
157 
158   reduction_axis2[0] = 0;
159   reduction_axis2[1] = 1;
160   result = tensor.minimum(reduction_axis2);
161   VERIFY_IS_EQUAL(result.dimension(0), 5);
162   VERIFY_IS_EQUAL(result.dimension(1), 7);
163   for (int i = 0; i < 5; ++i) {
164     for (int j = 0; j < 7; ++j) {
165       float min_val = (std::numeric_limits<float>::max)();
166       for (int k = 0; k < 2; ++k) {
167         for (int l = 0; l < 3; ++l) {
168           min_val = (std::min)(min_val, tensor(k, l, i, j));
169         }
170       }
171       VERIFY_IS_APPROX(result(i, j), min_val);
172     }
173   }
174 
175   {
176     Tensor<float, 0, DataLayout> min1 = tensor.minimum();
177     VERIFY_IS_EQUAL(min1.rank(), 0);
178 
179     array<ptrdiff_t, 4> reduction_axis4;
180     reduction_axis4[0] = 0;
181     reduction_axis4[1] = 1;
182     reduction_axis4[2] = 2;
183     reduction_axis4[3] = 3;
184     Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4);
185     VERIFY_IS_EQUAL(min2.rank(), 0);
186 
187     VERIFY_IS_APPROX(min1(), min2());
188   }
189 
190   reduction_axis2[0] = 0;
191   reduction_axis2[1] = 1;
192   result = tensor.mean(reduction_axis2);
193   VERIFY_IS_EQUAL(result.dimension(0), 5);
194   VERIFY_IS_EQUAL(result.dimension(1), 7);
195   for (int i = 0; i < 5; ++i) {
196     for (int j = 0; j < 7; ++j) {
197       float sum = 0.0f;
198       int count = 0;
199       for (int k = 0; k < 2; ++k) {
200         for (int l = 0; l < 3; ++l) {
201           sum += tensor(k, l, i, j);
202           ++count;
203         }
204       }
205       VERIFY_IS_APPROX(result(i, j), sum / count);
206     }
207   }
208 
209   {
210     Tensor<float, 0, DataLayout> mean1 = tensor.mean();
211     VERIFY_IS_EQUAL(mean1.rank(), 0);
212 
213     array<ptrdiff_t, 4> reduction_axis4;
214     reduction_axis4[0] = 0;
215     reduction_axis4[1] = 1;
216     reduction_axis4[2] = 2;
217     reduction_axis4[3] = 3;
218     Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4);
219     VERIFY_IS_EQUAL(mean2.rank(), 0);
220 
221     VERIFY_IS_APPROX(mean1(), mean2());
222   }
223 
224   {
225     Tensor<int, 1> ints(10);
226     std::iota(ints.data(), ints.data() + ints.dimension(0), 0);
227 
228     TensorFixedSize<bool, Sizes<> > all;
229     all = ints.all();
230     VERIFY(!all());
231     all = (ints >= ints.constant(0)).all();
232     VERIFY(all());
233 
234     TensorFixedSize<bool, Sizes<> > any;
235     any = (ints > ints.constant(10)).any();
236     VERIFY(!any());
237     any = (ints < ints.constant(1)).any();
238     VERIFY(any());
239   }
240 }
241 
242 
243 template <int DataLayout>
test_reductions_in_expr()244 static void test_reductions_in_expr() {
245   Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
246   tensor.setRandom();
247   array<ptrdiff_t, 2> reduction_axis2;
248   reduction_axis2[0] = 1;
249   reduction_axis2[1] = 3;
250 
251   Tensor<float, 2, DataLayout> result(2, 5);
252   result = result.constant(1.0f) - tensor.sum(reduction_axis2);
253   VERIFY_IS_EQUAL(result.dimension(0), 2);
254   VERIFY_IS_EQUAL(result.dimension(1), 5);
255   for (int i = 0; i < 2; ++i) {
256     for (int j = 0; j < 5; ++j) {
257       float sum = 0.0f;
258       for (int k = 0; k < 3; ++k) {
259         for (int l = 0; l < 7; ++l) {
260           sum += tensor(i, k, j, l);
261         }
262       }
263       VERIFY_IS_APPROX(result(i, j), 1.0f - sum);
264     }
265   }
266 }
267 
268 
269 template <int DataLayout>
test_full_reductions()270 static void test_full_reductions() {
271   Tensor<float, 2, DataLayout> tensor(2, 3);
272   tensor.setRandom();
273   array<ptrdiff_t, 2> reduction_axis;
274   reduction_axis[0] = 0;
275   reduction_axis[1] = 1;
276 
277   Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
278   VERIFY_IS_EQUAL(result.rank(), 0);
279 
280   float sum = 0.0f;
281   for (int i = 0; i < 2; ++i) {
282     for (int j = 0; j < 3; ++j) {
283       sum += tensor(i, j);
284     }
285   }
286   VERIFY_IS_APPROX(result(0), sum);
287 
288   result = tensor.square().sum(reduction_axis).sqrt();
289   VERIFY_IS_EQUAL(result.rank(), 0);
290 
291   sum = 0.0f;
292   for (int i = 0; i < 2; ++i) {
293     for (int j = 0; j < 3; ++j) {
294       sum += tensor(i, j) * tensor(i, j);
295     }
296   }
297   VERIFY_IS_APPROX(result(), sqrtf(sum));
298 }
299 
300 struct UserReducer {
301   static const bool PacketAccess = false;
UserReducerUserReducer302   UserReducer(float offset) : offset_(offset) {}
reduceUserReducer303   void reduce(const float val, float* accum) { *accum += val * val; }
initializeUserReducer304   float initialize() const { return 0; }
finalizeUserReducer305   float finalize(const float accum) const { return 1.0f / (accum + offset_); }
306 
307  private:
308   const float offset_;
309 };
310 
311 template <int DataLayout>
test_user_defined_reductions()312 static void test_user_defined_reductions() {
313   Tensor<float, 2, DataLayout> tensor(5, 7);
314   tensor.setRandom();
315   array<ptrdiff_t, 1> reduction_axis;
316   reduction_axis[0] = 1;
317 
318   UserReducer reducer(10.0f);
319   Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer);
320   VERIFY_IS_EQUAL(result.dimension(0), 5);
321   for (int i = 0; i < 5; ++i) {
322     float expected = 10.0f;
323     for (int j = 0; j < 7; ++j) {
324       expected += tensor(i, j) * tensor(i, j);
325     }
326     expected = 1.0f / expected;
327     VERIFY_IS_APPROX(result(i), expected);
328   }
329 }
330 
331 template <int DataLayout>
test_tensor_maps()332 static void test_tensor_maps() {
333   int inputs[2 * 3 * 5 * 7];
334   TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7);
335   TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5,
336                                                                 7);
337   const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const(
338       inputs, 2, 3, 5, 7);
339 
340   tensor_map.setRandom();
341   array<ptrdiff_t, 2> reduction_axis;
342   reduction_axis[0] = 1;
343   reduction_axis[1] = 3;
344 
345   Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis);
346   Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis);
347   Tensor<int, 2, DataLayout> result3 =
348       tensor_map_const_const.sum(reduction_axis);
349 
350   for (int i = 0; i < 2; ++i) {
351     for (int j = 0; j < 5; ++j) {
352       int sum = 0;
353       for (int k = 0; k < 3; ++k) {
354         for (int l = 0; l < 7; ++l) {
355           sum += tensor_map(i, k, j, l);
356         }
357       }
358       VERIFY_IS_EQUAL(result(i, j), sum);
359       VERIFY_IS_EQUAL(result2(i, j), sum);
360       VERIFY_IS_EQUAL(result3(i, j), sum);
361     }
362   }
363 }
364 
365 template <int DataLayout>
test_static_dims()366 static void test_static_dims() {
367   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
368   Tensor<float, 2, DataLayout> out(72, 97);
369   in.setRandom();
370 
371 #if !EIGEN_HAS_CONSTEXPR
372   array<int, 2> reduction_axis;
373   reduction_axis[0] = 1;
374   reduction_axis[1] = 3;
375 #else
376   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
377 #endif
378 
379   out = in.maximum(reduction_axis);
380 
381   for (int i = 0; i < 72; ++i) {
382     for (int j = 0; j < 97; ++j) {
383       float expected = -1e10f;
384       for (int k = 0; k < 53; ++k) {
385         for (int l = 0; l < 113; ++l) {
386           expected = (std::max)(expected, in(i, k, j, l));
387         }
388       }
389       VERIFY_IS_APPROX(out(i, j), expected);
390     }
391   }
392 }
393 
394 template <int DataLayout>
test_innermost_last_dims()395 static void test_innermost_last_dims() {
396   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
397   Tensor<float, 2, DataLayout> out(97, 113);
398   in.setRandom();
399 
400 // Reduce on the innermost dimensions.
401 #if !EIGEN_HAS_CONSTEXPR
402   array<int, 2> reduction_axis;
403   reduction_axis[0] = 0;
404   reduction_axis[1] = 1;
405 #else
406   // This triggers the use of packets for ColMajor.
407   Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
408 #endif
409 
410   out = in.maximum(reduction_axis);
411 
412   for (int i = 0; i < 97; ++i) {
413     for (int j = 0; j < 113; ++j) {
414       float expected = -1e10f;
415       for (int k = 0; k < 53; ++k) {
416         for (int l = 0; l < 72; ++l) {
417           expected = (std::max)(expected, in(l, k, i, j));
418         }
419       }
420       VERIFY_IS_APPROX(out(i, j), expected);
421     }
422   }
423 }
424 
425 template <int DataLayout>
test_innermost_first_dims()426 static void test_innermost_first_dims() {
427   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
428   Tensor<float, 2, DataLayout> out(72, 53);
429   in.setRandom();
430 
431 // Reduce on the innermost dimensions.
432 #if !EIGEN_HAS_CONSTEXPR
433   array<int, 2> reduction_axis;
434   reduction_axis[0] = 2;
435   reduction_axis[1] = 3;
436 #else
437   // This triggers the use of packets for RowMajor.
438   Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
439 #endif
440 
441   out = in.maximum(reduction_axis);
442 
443   for (int i = 0; i < 72; ++i) {
444     for (int j = 0; j < 53; ++j) {
445       float expected = -1e10f;
446       for (int k = 0; k < 97; ++k) {
447         for (int l = 0; l < 113; ++l) {
448           expected = (std::max)(expected, in(i, j, k, l));
449         }
450       }
451       VERIFY_IS_APPROX(out(i, j), expected);
452     }
453   }
454 }
455 
456 template <int DataLayout>
test_reduce_middle_dims()457 static void test_reduce_middle_dims() {
458   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
459   Tensor<float, 2, DataLayout> out(72, 53);
460   in.setRandom();
461 
462 // Reduce on the innermost dimensions.
463 #if !EIGEN_HAS_CONSTEXPR
464   array<int, 2> reduction_axis;
465   reduction_axis[0] = 1;
466   reduction_axis[1] = 2;
467 #else
468   // This triggers the use of packets for RowMajor.
469   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
470 #endif
471 
472   out = in.maximum(reduction_axis);
473 
474   for (int i = 0; i < 72; ++i) {
475     for (int j = 0; j < 113; ++j) {
476       float expected = -1e10f;
477       for (int k = 0; k < 53; ++k) {
478         for (int l = 0; l < 97; ++l) {
479           expected = (std::max)(expected, in(i, k, l, j));
480         }
481       }
482       VERIFY_IS_APPROX(out(i, j), expected);
483     }
484   }
485 }
486 
test_cxx11_tensor_reduction()487 void test_cxx11_tensor_reduction() {
488   CALL_SUBTEST(test_trivial_reductions<ColMajor>());
489   CALL_SUBTEST(test_trivial_reductions<RowMajor>());
490   CALL_SUBTEST(test_simple_reductions<ColMajor>());
491   CALL_SUBTEST(test_simple_reductions<RowMajor>());
492   CALL_SUBTEST(test_reductions_in_expr<ColMajor>());
493   CALL_SUBTEST(test_reductions_in_expr<RowMajor>());
494   CALL_SUBTEST(test_full_reductions<ColMajor>());
495   CALL_SUBTEST(test_full_reductions<RowMajor>());
496   CALL_SUBTEST(test_user_defined_reductions<ColMajor>());
497   CALL_SUBTEST(test_user_defined_reductions<RowMajor>());
498   CALL_SUBTEST(test_tensor_maps<ColMajor>());
499   CALL_SUBTEST(test_tensor_maps<RowMajor>());
500   CALL_SUBTEST(test_static_dims<ColMajor>());
501   CALL_SUBTEST(test_static_dims<RowMajor>());
502   CALL_SUBTEST(test_innermost_last_dims<ColMajor>());
503   CALL_SUBTEST(test_innermost_last_dims<RowMajor>());
504   CALL_SUBTEST(test_innermost_first_dims<ColMajor>());
505   CALL_SUBTEST(test_innermost_first_dims<RowMajor>());
506   CALL_SUBTEST(test_reduce_middle_dims<ColMajor>());
507   CALL_SUBTEST(test_reduce_middle_dims<RowMajor>());
508 }
509