1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and
5 //                    Benoit Steiner <benoit.steiner.goog@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 
13 #include <Eigen/CXX11/Tensor>
14 
15 using Eigen::Tensor;
16 using Eigen::array;
17 
18 template <int DataLayout>
test_simple_reverse()19 static void test_simple_reverse()
20 {
21   Tensor<float, 4, DataLayout> tensor(2,3,5,7);
22   tensor.setRandom();
23 
24   array<bool, 4> dim_rev;
25   dim_rev[0] = false;
26   dim_rev[1] = true;
27   dim_rev[2] = true;
28   dim_rev[3] = false;
29 
30   Tensor<float, 4, DataLayout> reversed_tensor;
31   reversed_tensor = tensor.reverse(dim_rev);
32 
33   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
34   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
35   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
36   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
37 
38   for (int i = 0; i < 2; ++i) {
39     for (int j = 0; j < 3; ++j) {
40       for (int k = 0; k < 5; ++k) {
41         for (int l = 0; l < 7; ++l) {
42           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l));
43         }
44       }
45     }
46   }
47 
48   dim_rev[0] = true;
49   dim_rev[1] = false;
50   dim_rev[2] = false;
51   dim_rev[3] = false;
52 
53   reversed_tensor = tensor.reverse(dim_rev);
54 
55   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
56   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
57   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
58   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
59 
60 
61   for (int i = 0; i < 2; ++i) {
62     for (int j = 0; j < 3; ++j) {
63       for (int k = 0; k < 5; ++k) {
64         for (int l = 0; l < 7; ++l) {
65           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l));
66         }
67       }
68     }
69   }
70 
71   dim_rev[0] = true;
72   dim_rev[1] = false;
73   dim_rev[2] = false;
74   dim_rev[3] = true;
75 
76   reversed_tensor = tensor.reverse(dim_rev);
77 
78   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
79   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
80   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
81   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
82 
83 
84   for (int i = 0; i < 2; ++i) {
85     for (int j = 0; j < 3; ++j) {
86       for (int k = 0; k < 5; ++k) {
87         for (int l = 0; l < 7; ++l) {
88           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l));
89         }
90       }
91     }
92   }
93 }
94 
95 
96 template <int DataLayout>
test_expr_reverse(bool LValue)97 static void test_expr_reverse(bool LValue)
98 {
99   Tensor<float, 4, DataLayout> tensor(2,3,5,7);
100   tensor.setRandom();
101 
102   array<bool, 4> dim_rev;
103   dim_rev[0] = false;
104   dim_rev[1] = true;
105   dim_rev[2] = false;
106   dim_rev[3] = true;
107 
108   Tensor<float, 4, DataLayout> expected(2, 3, 5, 7);
109   if (LValue) {
110     expected.reverse(dim_rev) = tensor;
111   } else {
112     expected = tensor.reverse(dim_rev);
113   }
114 
115   Tensor<float, 4, DataLayout> result(2,3,5,7);
116 
117   array<ptrdiff_t, 4> src_slice_dim;
118   src_slice_dim[0] = 2;
119   src_slice_dim[1] = 3;
120   src_slice_dim[2] = 1;
121   src_slice_dim[3] = 7;
122   array<ptrdiff_t, 4> src_slice_start;
123   src_slice_start[0] = 0;
124   src_slice_start[1] = 0;
125   src_slice_start[2] = 0;
126   src_slice_start[3] = 0;
127   array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim;
128   array<ptrdiff_t, 4> dst_slice_start = src_slice_start;
129 
130   for (int i = 0; i < 5; ++i) {
131     if (LValue) {
132       result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
133           tensor.slice(src_slice_start, src_slice_dim);
134     } else {
135       result.slice(dst_slice_start, dst_slice_dim) =
136           tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
137     }
138     src_slice_start[2] += 1;
139     dst_slice_start[2] += 1;
140   }
141 
142   VERIFY_IS_EQUAL(result.dimension(0), 2);
143   VERIFY_IS_EQUAL(result.dimension(1), 3);
144   VERIFY_IS_EQUAL(result.dimension(2), 5);
145   VERIFY_IS_EQUAL(result.dimension(3), 7);
146 
147   for (int i = 0; i < expected.dimension(0); ++i) {
148     for (int j = 0; j < expected.dimension(1); ++j) {
149       for (int k = 0; k < expected.dimension(2); ++k) {
150         for (int l = 0; l < expected.dimension(3); ++l) {
151           VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
152         }
153       }
154     }
155   }
156 
157   dst_slice_start[2] = 0;
158   result.setRandom();
159   for (int i = 0; i < 5; ++i) {
160      if (LValue) {
161        result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) =
162            tensor.slice(dst_slice_start, dst_slice_dim);
163      } else {
164        result.slice(dst_slice_start, dst_slice_dim) =
165            tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
166      }
167     dst_slice_start[2] += 1;
168   }
169 
170   for (int i = 0; i < expected.dimension(0); ++i) {
171     for (int j = 0; j < expected.dimension(1); ++j) {
172       for (int k = 0; k < expected.dimension(2); ++k) {
173         for (int l = 0; l < expected.dimension(3); ++l) {
174           VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
175         }
176       }
177     }
178   }
179 }
180 
181 
test_cxx11_tensor_reverse()182 void test_cxx11_tensor_reverse()
183 {
184   CALL_SUBTEST(test_simple_reverse<ColMajor>());
185   CALL_SUBTEST(test_simple_reverse<RowMajor>());
186   CALL_SUBTEST(test_expr_reverse<ColMajor>(true));
187   CALL_SUBTEST(test_expr_reverse<RowMajor>(true));
188   CALL_SUBTEST(test_expr_reverse<ColMajor>(false));
189   CALL_SUBTEST(test_expr_reverse<RowMajor>(false));
190 }
191