1 /*############################################################################
2   # Copyright 2016-2017 Intel Corporation
3   #
4   # Licensed under the Apache License, Version 2.0 (the "License");
5   # you may not use this file except in compliance with the License.
6   # You may obtain a copy of the License at
7   #
8   #     http://www.apache.org/licenses/LICENSE-2.0
9   #
10   # Unless required by applicable law or agreed to in writing, software
11   # distributed under the License is distributed on an "AS IS" BASIS,
12   # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   # See the License for the specific language governing permissions and
14   # limitations under the License.
15   ############################################################################*/
16 
17 /*!
18  * \file
19  * \brief Elliptic curve group interface.
20  */
21 
22 #ifndef EPID_COMMON_MATH_ECGROUP_H_
23 #define EPID_COMMON_MATH_ECGROUP_H_
24 
25 #include "epid/common/errors.h"
26 #include "epid/common/math/bignum.h"
27 #include "epid/common/math/finitefield.h"
28 #include "epid/common/stdtypes.h"
29 #include "epid/common/types.h"
30 
31 /// Elliptic curve group operations
32 /*!
33   \defgroup EcGroupPrimitives ecgroup
34   Provides APIs for working with Elliptic curve groups.
35   Elliptic curve groups allow simple mathematical operations based on points
36   that lie on a defined elliptic curve. The results of these operations also
37   lie on the same curve.
38 
39   Curves themselves are defined based on elements (::FfElement) of a finite
40   field (::FiniteField).
41 
42   \ingroup EpidMath
43 @{
44 */
45 
46 /// Elliptic curve group over finite field.
47 typedef struct EcGroup EcGroup;
48 
49 /// Constructs a new EcGroup.
50 /*!
51 
52  Allocates memory and creates a new elliptic curve group.
53 
54  Use DeleteFiniteField() to free memory.
55 
56  \param[in] ff
57  The finite field on which the curve is based.
58  \param[in] a
59  The A value of the elliptic curve.
60  \param[in] b
61  The B value of the elliptic curve.
62  \param[in] x
63  The X-coordinate of the base point of the elliptic curve.
64  \param[in] y
65  The Y-coordinate of the base point of the elliptic curve.
66  \param[in] order
67  The order of the elliptic curve group.
68  \param[in] cofactor
69  The co-factor of the elliptic curve.
70  \param[out] g
71  The newly constructed elliptic curve group.
72 
73  \returns ::EpidStatus
74 
75  \attention It is the responsibility of the caller to ensure that ff exists
76  for the entire lifetime of the new EcGroup.
77 
78  \see DeleteEcGroup
79 */
80 EpidStatus NewEcGroup(FiniteField const* ff, FfElement const* a,
81                       FfElement const* b, FfElement const* x,
82                       FfElement const* y, BigNum const* order,
83                       BigNum const* cofactor, EcGroup** g);
84 
85 /// Deletes a previously allocated EcGroup.
86 /*!
87  Frees memory pointed to by elliptic curve group. Nulls the pointer.
88 
89  \param[in] g
90  The elliptic curve group. Can be NULL.
91 
92  \see NewEcGroup
93 */
94 void DeleteEcGroup(EcGroup** g);
95 
96 /// Point on elliptic curve over finite field.
97 typedef struct EcPoint EcPoint;
98 
99 /// Creates a new EcPoint.
100 /*!
101  Allocates memory and creates a new point on elliptic curve group.
102 
103  Use DeleteEcPoint() to free memory.
104 
105  \param[in] g
106  Elliptic curve group.
107  \param[out] p
108  Newly constructed point on the elliptic curve group g.
109 
110  \returns ::EpidStatus
111 
112  \attention It is the responsibility of the caller to ensure that g exists
113  for the entire lifetime of the new EcPoint.
114 
115  \see NewEcGroup
116  \see DeleteEcPoint
117 */
118 EpidStatus NewEcPoint(EcGroup const* g, EcPoint** p);
119 
120 /// Deletes a previously allocated EcPoint.
121 /*!
122 
123  Frees memory used by a point on elliptic curve group. Nulls the pointer.
124 
125  \param[in] p
126  The EcPoint. Can be NULL.
127 
128  \see NewEcPoint
129 */
130 void DeleteEcPoint(EcPoint** p);
131 
132 /// Deserializes an EcPoint from a string.
133 /*!
134  \param[in] g
135  The elliptic curve group.
136  \param[in] p_str
137  The serialized value.
138  \param[in] strlen
139  The size of p_str in bytes.
140  \param[out] p
141  The target EcPoint.
142 
143  \returns ::EpidStatus
144 
145  \see NewEcPoint
146 */
147 EpidStatus ReadEcPoint(EcGroup* g, ConstOctStr p_str, size_t strlen,
148                        EcPoint* p);
149 
150 /// Serializes an EcPoint to a string.
151 /*!
152  \param[in] g
153  The elliptic curve group.
154  \param[in] p
155  The EcPoint to be serialized.
156  \param[out] p_str
157  The target string.
158  \param[in] strlen
159  the size of p_str in bytes.
160 
161  \returns ::EpidStatus
162 
163  \see NewEcPoint
164 */
165 EpidStatus WriteEcPoint(EcGroup* g, EcPoint const* p, OctStr p_str,
166                         size_t strlen);
167 
168 /// Multiplies two elements in an elliptic curve group.
169 /*!
170  This multiplication operation is also known as element addition for
171  elliptic curve groups.
172 
173  \param[in] g
174  The elliptic curve group.
175  \param[in] a
176  The first operand to be multiplied.
177  \param[in] b
178  The second operand to be multiplied.
179  \param[out] r
180  The result of multiplying a and b.
181 
182  \returns ::EpidStatus
183 
184  \see NewEcGroup
185  \see NewEcPoint
186 */
187 EpidStatus EcMul(EcGroup* g, EcPoint const* a, EcPoint const* b, EcPoint* r);
188 
189 /// Raises a point in an elliptic curve group to a power.
190 /*!
191  This exponentiation operation is also known as element multiplication
192  for elliptic curve groups.
193  \param[in] g
194  The elliptic curve group.
195  \param[in] a
196  The base.
197  \param[in] b
198  The power. Power must be less than the order of the elliptic curve
199  group.
200  \param[out] r
201  The result of raising a to the power b.
202 
203  \returns ::EpidStatus
204 
205  \see NewEcGroup
206  \see NewEcPoint
207 */
208 EpidStatus EcExp(EcGroup* g, EcPoint const* a, BigNumStr const* b, EcPoint* r);
209 
210 /// Software side-channel mitigated implementation of EcExp.
211 /*!
212  This exponentiation operation is also known as element multiplication
213  for elliptic curve groups.
214 
215  \attention
216  The reference implementation of EcSscmExp calls EcExp directly because
217  the implementation of EcExp is already side channel mitigated. Implementers
218  providing their own versions of this function are responsible for ensuring
219  that EcSscmExp is side channel mitigated per section 8 of the
220  Intel(R) EPID 2.0 spec.
221 
222  \param[in] g
223  The elliptic curve group.
224  \param[in] a
225  The base.
226  \param[in] b
227  The power. Power must be less than the order of the elliptic curve
228  group.
229  \param[out] r
230  The result of raising a to the power b.
231 
232  \returns ::EpidStatus
233 
234  \see NewEcGroup
235  \see NewEcPoint
236 */
237 EpidStatus EcSscmExp(EcGroup* g, EcPoint const* a, BigNumStr const* b,
238                      EcPoint* r);
239 
240 /// Multi-exponentiates elements in elliptic curve group.
241 /*!
242  Takes a group elements a[0], ... , a[m-1] in G and positive
243  integers b[0], ..., b[m-1], where m is a small positive integer.
244  Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
245 
246  \param[in] g
247  The elliptic curve group.
248  \param[in] a
249  The bases.
250  \param[in] b
251  The powers. Power must be less than the order of the elliptic curve
252  group.
253  \param[in] m
254  Number of entries in a and b.
255  \param[out] r
256  The result of raising each a to the corresponding power b and multiplying
257  the results.
258 
259  \returns ::EpidStatus
260 
261  \see NewEcGroup
262  \see NewEcPoint
263 */
264 EpidStatus EcMultiExp(EcGroup* g, EcPoint const** a, BigNumStr const** b,
265                       size_t m, EcPoint* r);
266 
267 /// Multi-exponentiates elements in elliptic curve group.
268 /*!
269 Takes a group elements a[0], ... , a[m-1] in G and positive
270 integers b[0], ..., b[m-1], where m is a small positive integer.
271 Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
272 
273 \param[in] g
274 The elliptic curve group.
275 \param[in] a
276 The bases.
277 \param[in] b
278 The powers. Power must be less than the order of the elliptic curve
279 group.
280 \param[in] m
281 Number of entries in a and b.
282 \param[out] r
283 The result of raising each a to the corresponding power b and multiplying
284 the results.
285 
286 \returns ::EpidStatus
287 
288 \see NewEcGroup
289 \see NewEcPoint
290 */
291 EpidStatus EcMultiExpBn(EcGroup* g, EcPoint const** a, BigNum const** b,
292                         size_t m, EcPoint* r);
293 
294 /// Software side-channel mitigated implementation of EcMultiExp.
295 /*!
296  Takes a group elements a[0], ... , a[m-1] in G and positive
297  integers b[0], ..., b[m-1], where m is a small positive integer.
298  Outputs r (in G) = EcExp(a[0],b[0]) * ... * EcExp(a[m-1],b[m-1]).
299 
300  \attention
301  The reference implementation of EcSscmMultiExp calls EcMultiExp
302  directly because the implementation of EcMultiExp is already side channel
303  mitigated. Implementers providing their own versions of this function are
304  responsible for ensuring that EcSscmMultiExp is side channel mitigated per
305  section 8 of the Intel(R) EPID 2.0 spec.
306 
307  \param[in] g
308  The elliptic curve group.
309  \param[in] a
310  The bases.
311  \param[in] b
312  The powers. Power must be less than the order of the elliptic curve
313  group.
314  \param[in] m
315  Number of entries in a and b.
316  \param[out] r
317  The result of raising each a to the corresponding power b and
318  multiplying the results.
319 
320  \returns ::EpidStatus
321 
322  \see NewEcGroup
323  \see NewEcPoint
324 */
325 EpidStatus EcSscmMultiExp(EcGroup* g, EcPoint const** a, BigNumStr const** b,
326                           size_t m, EcPoint* r);
327 
328 /// Generates a random element from an elliptic curve group.
329 /*!
330  This function is only available for G1 and GT.
331 
332  \param[in] g
333  The elliptic curve group.
334  \param[in] rnd_func
335  Random number generator.
336  \param[in] rnd_func_param
337  Pass through context data for rnd_func.
338  \param[in,out] r
339  Output random elliptic curve element.
340 
341  \returns ::EpidStatus
342 
343  \see NewEcPoint
344  \see BitSupplier
345 */
346 EpidStatus EcGetRandom(EcGroup* g, BitSupplier rnd_func, void* rnd_func_param,
347                        EcPoint* r);
348 
349 /// Checks if a point is in an elliptic curve group.
350 /*!
351  \param[in] g
352  The elliptic curve group.
353  \param[in] p_str
354  A serialized point. Must be a G1ElemStr or G2ElemStr.
355  \param[in] strlen
356  The size of p_str in bytes.
357  \param[out] in_group
358  The result of the check.
359 
360  \returns ::EpidStatus
361 
362  \see NewEcPoint
363 */
364 EpidStatus EcInGroup(EcGroup* g, ConstOctStr p_str, size_t strlen,
365                      bool* in_group);
366 
367 /// Hashes an arbitrary message to an Intel(R) EPID 1.1 element in an elliptic
368 /// curve group.
369 /*!
370 \param[in] g
371 The elliptic curve group.
372 \param[in] msg
373 The message.
374 \param[in] msg_len
375 The size of msg in bytes.
376 \param[out] r
377 The hashed value.
378 
379 \returns ::EpidStatus
380 
381 \see NewEcGroup
382 \see NewEcPoint
383 */
384 EpidStatus Epid11EcHash(EcGroup* g, ConstOctStr msg, size_t msg_len,
385                         EcPoint* r);
386 
387 /// Hashes an arbitrary message to an element in an elliptic curve group.
388 /*!
389  \param[in] g
390  The elliptic curve group.
391  \param[in] msg
392  The message.
393  \param[in] msg_len
394  The size of msg in bytes.
395  \param[in] hash_alg
396  The hash algorithm.
397  \param[out] r
398  The hashed value.
399  \param[out] iterations
400  The number of hash iterations needed to find a valid hash. Can be NULL.
401 
402  \returns ::EpidStatus
403 
404  \see NewEcGroup
405  \see NewEcPoint
406 */
407 EpidStatus EcHash(EcGroup* g, ConstOctStr msg, size_t msg_len, HashAlg hash_alg,
408                   EcPoint* r, uint32_t* iterations);
409 
410 /// Sets an EcPoint variable to a point on a curve.
411 /*!
412  This function is only available for G1.
413 
414  \param[in] g
415  The elliptic curve group.
416  \param[in] x
417  The x coordinate.
418  \param[out] r
419  The point.
420 
421  \returns ::EpidStatus
422 
423  \see NewEcGroup
424  \see NewEcPoint
425  \see NewFfElement
426 */
427 EpidStatus EcMakePoint(EcGroup* g, FfElement const* x, EcPoint* r);
428 
429 /// Computes the additive inverse of an EcPoint.
430 /*!
431  This inverse operation is also known as element negation
432  for elliptic curve groups.
433 
434  \param[in] g
435  The elliptic curve group.
436  \param[in] p
437  The point.
438  \param[out] r
439  The inverted point.
440 
441  \returns ::EpidStatus
442 
443  \see NewEcGroup
444  \see NewEcPoint
445 */
446 EpidStatus EcInverse(EcGroup* g, EcPoint const* p, EcPoint* r);
447 
448 /// Checks if two EcPoints are equal.
449 /*!
450  \param[in] g
451  The elliptic curve group.
452  \param[in] a
453  A point to check.
454  \param[in] b
455  Another point to check.
456  \param[out] is_equal
457  The result of the check.
458 
459  \returns ::EpidStatus
460 
461  \see NewEcGroup
462  \see NewEcPoint
463  */
464 EpidStatus EcIsEqual(EcGroup* g, EcPoint const* a, EcPoint const* b,
465                      bool* is_equal);
466 
467 /// Checks if an EcPoint is the identity element.
468 /*!
469 
470  Takes a group element P as input. It outputs true if P is the
471  identity element of G. Otherwise, it outputs false.
472 
473  \param[in] g
474  The elliptic curve group.
475  \param[in] p
476  The point to check.
477  \param[out] is_identity
478  The result of the check.
479 
480  \returns ::EpidStatus
481 
482  \see NewEcGroup
483  \see NewEcPoint
484 */
485 EpidStatus EcIsIdentity(EcGroup* g, EcPoint const* p, bool* is_identity);
486 
487 /*!
488 @}
489 */
490 #endif  // EPID_COMMON_MATH_ECGROUP_H_
491