1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //     Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 //     GF(p) methods
44 //
45 */
46 #include "owndefs.h"
47 #include "owncp.h"
48 
49 #include "pcpbnumisc.h"
50 #include "gsmodstuff.h"
51 #include "pcpgfpstuff.h"
52 #include "pcpgfpmethod.h"
53 #include "pcpecprime.h"
54 
55 //tbcd: temporary excluded: #include <assert.h>
56 
57 #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
58 
59 /* arithmetic over P-192r1 NIST modulus */
60 #define      p192r1_add OWNAPI(p192r1_add)
61 BNU_CHUNK_T* p192r1_add(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
62 
63 #define      p192r1_sub OWNAPI(p192r1_sub)
64 BNU_CHUNK_T* p192r1_sub(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
65 
66 #define      p192r1_neg OWNAPI(p192r1_neg)
67 BNU_CHUNK_T* p192r1_neg(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
68 
69 #define      p192r1_div_by_2 OWNAPI(p192r1_div_by_2)
70 BNU_CHUNK_T* p192r1_div_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
71 
72 #define      p192r1_mul_by_2 OWNAPI(p192r1_mul_by_2)
73 BNU_CHUNK_T* p192r1_mul_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
74 
75 #define      p192r1_mul_by_3 OWNAPI(p192r1_mul_by_3)
76 BNU_CHUNK_T* p192r1_mul_by_3 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
77 
78 #if(_IPP_ARCH ==_IPP_ARCH_EM64T)
79 #define      p192r1_mul_montl OWNAPI(p192r1_mul_montl)
80 BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
81 
82 #define      p192r1_mul_montx OWNAPI(p192r1_mul_montx)
83 BNU_CHUNK_T* p192r1_mul_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
84 
85 #define      p192r1_sqr_montl OWNAPI(p192r1_sqr_montl)
86 BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
87 
88 #define      p192r1_sqr_montx OWNAPI(p192r1_sqr_montx)
89 BNU_CHUNK_T* p192r1_sqr_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
90 
91 #define      p192r1_to_mont OWNAPI(p192r1_to_mont)
92 BNU_CHUNK_T* p192r1_to_mont  (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
93 
94 #define      p192r1_mont_back OWNAPI(p192r1_mont_back)
95 BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
96 #endif
97 #if(_IPP_ARCH ==_IPP_ARCH_IA32)
98 #define      p192r1_mul_mont_slm OWNAPI(p192r1_mul_mont_slm)
99 BNU_CHUNK_T* p192r1_mul_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
100 
101 #define      p192r1_sqr_mont_slm OWNAPI(p192r1_sqr_mont_slm)
102 BNU_CHUNK_T* p192r1_sqr_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
103 
104 #define      p192r1_mred OWNAPI(p192r1_mred)
105 BNU_CHUNK_T* p192r1_mred(BNU_CHUNK_T* res, BNU_CHUNK_T* product);
106 #endif
107 
108 #define OPERAND_BITSIZE (192)
109 #define LEN_P192        (BITS_BNU_CHUNK(OPERAND_BITSIZE))
110 
111 
112 /*
113 // ia32 multiplicative methods
114 */
115 #if (_IPP_ARCH ==_IPP_ARCH_IA32)
p192r1_mul_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFE)116 static BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
117 {
118    BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE);
119    //tbcd: temporary excluded: assert(NULL!=product);
120 
121    cpMulAdc_BNU_school(product, pA,LEN_P192, pB,LEN_P192);
122    p192r1_mred(pR, product);
123 
124    cpGFpReleasePool(2, pGFE);
125    return pR;
126 }
127 
p192r1_sqr_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)128 static BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
129 {
130    BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE);
131    //tbcd: temporary excluded: assert(NULL!=product);
132 
133    cpSqrAdc_BNU_school(product, pA,LEN_P192);
134    p192r1_mred(pR, product);
135 
136    cpGFpReleasePool(2, pGFE);
137    return pR;
138 }
139 
140 
141 /*
142 // Montgomery domain conversion constants
143 */
144 static BNU_CHUNK_T RR[] = {
145    0x00000001,0x00000000,0x00000002,0x00000000,
146    0x00000001,0x00000000};
147 
148 static BNU_CHUNK_T one[] = {
149    1,0,0,0,0,0};
150 
p192r1_to_mont(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)151 static BNU_CHUNK_T* p192r1_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
152 {
153    return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
154 }
155 
p192r1_mont_back(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)156 static BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
157 {
158    return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)one, pGFE);
159 }
160 
p192r1_to_mont_slm(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)161 static BNU_CHUNK_T* p192r1_to_mont_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
162 {
163    return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
164 }
165 
p192r1_mont_back_slm(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)166 static BNU_CHUNK_T* p192r1_mont_back_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
167 {
168    return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)one, pGFE);
169 }
170 #endif /* _IPP >= _IPP_P8 */
171 
172 /*
173 // return specific gf p192r1 arith methods,
174 //    p192r1 = 2^192 -2^64 -1 (NIST P192r1)
175 */
gsArithGF_p192r1(void)176 static gsModMethod* gsArithGF_p192r1(void)
177 {
178    static gsModMethod m = {
179       p192r1_to_mont,
180       p192r1_mont_back,
181       p192r1_mul_montl,
182       p192r1_sqr_montl,
183       NULL,
184       p192r1_add,
185       p192r1_sub,
186       p192r1_neg,
187       p192r1_div_by_2,
188       p192r1_mul_by_2,
189       p192r1_mul_by_3,
190    };
191 
192    #if(_IPP_ARCH==_IPP_ARCH_EM64T) && ((_ADCOX_NI_ENABLING_==_FEATURE_ON_) || (_ADCOX_NI_ENABLING_==_FEATURE_TICKTOCK_))
193    if(IsFeatureEnabled(ippCPUID_ADCOX)) {
194       m.mul = p192r1_mul_montx;
195       m.sqr = p192r1_sqr_montx;
196    }
197    #endif
198 
199    #if(_IPP_ARCH==_IPP_ARCH_IA32)
200    if(IsFeatureEnabled(ippCPUID_SSSE3|ippCPUID_MOVBE) && !IsFeatureEnabled(ippCPUID_AVX)) {
201       m.mul = p192r1_mul_mont_slm;
202       m.sqr = p192r1_sqr_mont_slm;
203       m.encode = p192r1_to_mont_slm;
204       m.decode = p192r1_mont_back_slm;
205    }
206    #endif
207 
208    return &m;
209 }
210 #endif /* (_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) */
211 
212 /*F*
213 // Name: ippsGFpMethod_p192r1
214 //
215 // Purpose: Returns a reference to an implementation of
216 //          arithmetic operations over GF(q).
217 //
218 // Returns:  Pointer to a structure containing an implementation of arithmetic
219 //           operations over GF(q). q = 2^192 - 2^64 - 1
220 *F*/
221 
222 IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p192r1, (void) )
223 {
224    static IppsGFpMethod method = {
225       cpID_PrimeP192r1,
226       192,
227       secp192r1_p,
228       NULL
229    };
230 
231    #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
232    method.arith = gsArithGF_p192r1();
233    #else
234    method.arith = gsArithGFp();
235    #endif
236 
237    return &method;
238 }
239 
240 #undef LEN_P192
241 #undef OPERAND_BITSIZE
242