1 /*******************************************************************************
2 * Copyright 2016-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //     Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 //     GF(p) methods
44 //
45 */
46 #include "owndefs.h"
47 #include "owncp.h"
48 
49 #include "pcpbnumisc.h"
50 #include "gsmodstuff.h"
51 #include "pcpgfpstuff.h"
52 #include "pcpgfpmethod.h"
53 #include "pcpbnuarith.h"
54 #include "pcpecprime.h"
55 
56 //tbcd: temporary excluded: #include <assert.h>
57 
58 #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
59 
60 #define      p384r1_add      OWNAPI(p384r1_add)
61 #define      p384r1_sub      OWNAPI(p384r1_sub)
62 #define      p384r1_neg      OWNAPI(p384r1_neg)
63 #define      p384r1_div_by_2 OWNAPI(p384r1_div_by_2)
64 #define      p384r1_mul_by_2 OWNAPI(p384r1_mul_by_2)
65 #define      p384r1_mul_by_3 OWNAPI(p384r1_mul_by_3)
66 
67 /* arithmetic over P-384r1 NIST modulus */
68 BNU_CHUNK_T* p384r1_add(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
69 BNU_CHUNK_T* p384r1_sub(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
70 BNU_CHUNK_T* p384r1_neg(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
71 BNU_CHUNK_T* p384r1_div_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
72 BNU_CHUNK_T* p384r1_mul_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
73 BNU_CHUNK_T* p384r1_mul_by_3 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
74 #if(_IPP_ARCH ==_IPP_ARCH_EM64T)
75 //BNU_CHUNK_T* p384r1_mul_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
76 //BNU_CHUNK_T* p384r1_sqr_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
77 //BNU_CHUNK_T* p384r1_mul_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
78 //BNU_CHUNK_T* p384r1_sqr_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
79 //BNU_CHUNK_T* p384r1_to_mont  (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
80 //BNU_CHUNK_T* p384r1_mont_back(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
81 #endif
82 
83 #define      p384r1_mred OWNAPI(p384r1_mred)
84 BNU_CHUNK_T* p384r1_mred(BNU_CHUNK_T* res, BNU_CHUNK_T* product);
85 
86 #if(_IPP_ARCH ==_IPP_ARCH_IA32)
87 
88 #define      p384r1_mul_mont_slm OWNAPI(p384r1_mul_mont_slm)
89 #define      p384r1_sqr_mont_slm OWNAPI(p384r1_sqr_mont_slm)
90 
91 BNU_CHUNK_T* p384r1_mul_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
92 BNU_CHUNK_T* p384r1_sqr_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
93 #endif
94 
95 #define OPERAND_BITSIZE (384)
96 #define LEN_P384        (BITS_BNU_CHUNK(OPERAND_BITSIZE))
97 
98 
99 /*
100 // multiplicative methods
101 */
p384r1_mul_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFE)102 static BNU_CHUNK_T* p384r1_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
103 {
104    BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE);
105    //tbcd: temporary excluded: assert(NULL!=product);
106 
107    cpMul_BNU_school(product, pA,LEN_P384, pB,LEN_P384);
108    p384r1_mred(pR, product);
109 
110    cpGFpReleasePool(2, pGFE);
111    return pR;
112 }
113 
p384r1_sqr_montl(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)114 static BNU_CHUNK_T* p384r1_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
115 {
116    BNU_CHUNK_T* product = gsModPoolAlloc((gsModEngine*)pGFE, 2);
117 
118    cpSqr_BNU_school(product, pA,LEN_P384);
119    p384r1_mred(pR, product);
120 
121    cpGFpReleasePool(2, pGFE);
122    return pR;
123 }
124 
125 
126 /*
127 // Montgomery domain conversion constants
128 */
129 static Ipp64u RR[] = {
130    0xfffffffe00000001,0x0000000200000000,0xfffffffe00000000,
131    0x0000000200000000,0x0000000000000001,0x0000000000000000
132 };
133 
134 static BNU_CHUNK_T one[] = {
135 #if(_IPP_ARCH == _IPP_ARCH_EM64T)
136    1,0,0,0,0,0};
137 #elif(_IPP_ARCH == _IPP_ARCH_IA32)
138    1,0,0,0,0,0,0,0,0,0,0,0};
139 #endif
140 
p384r1_to_mont(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)141 static BNU_CHUNK_T* p384r1_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
142 {
143    return p384r1_mul_montl(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
144 }
145 
p384r1_mont_back(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)146 static BNU_CHUNK_T* p384r1_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
147 {
148    return p384r1_mul_montl(pR, pA, (BNU_CHUNK_T*)one, pGFE);
149 }
150 
151 #if (_ADCOX_NI_ENABLING_==_FEATURE_ON_) || (_ADCOX_NI_ENABLING_==_FEATURE_TICKTOCK_)
152 //BNU_CHUNK_T* p384r1_mul_montx(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
153 //BNU_CHUNK_T* p384r1_sqr_montx(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
154 #endif
155 
156 #if(_IPP_ARCH ==_IPP_ARCH_IA32)
p384r1_to_mont_slm(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)157 static BNU_CHUNK_T* p384r1_to_mont_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
158 {
159    return p384r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
160 }
161 
p384r1_mont_back_slm(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFE)162 static BNU_CHUNK_T* p384r1_mont_back_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
163 {
164    return p384r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)one, pGFE);
165 }
166 #endif /* _IPP_ARCH ==_IPP_ARCH_IA32 */
167 
168 /*
169 // return specific gf p384r1 arith methods,
170 //    p384r1 = 2^384 -2^128 -2^96 +2^32 -1 (NIST P384r1)
171 */
gsArithGF_p384r1(void)172 static gsModMethod* gsArithGF_p384r1(void)
173 {
174    static gsModMethod m = {
175       p384r1_to_mont,
176       p384r1_mont_back,
177       p384r1_mul_montl,
178       p384r1_sqr_montl,
179       NULL,
180       p384r1_add,
181       p384r1_sub,
182       p384r1_neg,
183       p384r1_div_by_2,
184       p384r1_mul_by_2,
185       p384r1_mul_by_3,
186    };
187 
188    #if(_IPP_ARCH==_IPP_ARCH_IA32)
189    if(IsFeatureEnabled(ippCPUID_SSSE3|ippCPUID_MOVBE) && !IsFeatureEnabled(ippCPUID_AVX)) {
190       m.mul = p384r1_mul_mont_slm;
191       m.sqr = p384r1_sqr_mont_slm;
192       m.encode = p384r1_to_mont_slm;
193       m.decode = p384r1_mont_back_slm;
194    }
195    #endif
196 
197    return &m;
198 }
199 #endif /* (_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) */
200 
201 /*F*
202 // Name: ippsGFpMethod_p384r1
203 //
204 // Purpose: Returns a reference to an implementation of
205 //          arithmetic operations over GF(q).
206 //
207 // Returns:  Pointer to a structure containing an implementation of arithmetic
208 //           operations over GF(q). q = 2^384 - 2^128 - 2^96 + 2^32 - 1
209 *F*/
210 
211 IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p384r1, (void) )
212 {
213    static IppsGFpMethod method = {
214       cpID_PrimeP384r1,
215       384,
216       secp384r1_p,
217       NULL
218    };
219 
220    #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
221    method.arith = gsArithGF_p384r1();
222    #else
223    method.arith = gsArithGFp();
224    #endif
225 
226    return &method;
227 }
228 
229 #undef LEN_P384
230 #undef OPERAND_BITSIZE
231