1 /******************************************************************************* 2 * Copyright 2018 Intel Corporation 3 * All Rights Reserved. 4 * 5 * If this software was obtained under the Intel Simplified Software License, 6 * the following terms apply: 7 * 8 * The source code, information and material ("Material") contained herein is 9 * owned by Intel Corporation or its suppliers or licensors, and title to such 10 * Material remains with Intel Corporation or its suppliers or licensors. The 11 * Material contains proprietary information of Intel or its suppliers and 12 * licensors. The Material is protected by worldwide copyright laws and treaty 13 * provisions. No part of the Material may be used, copied, reproduced, 14 * modified, published, uploaded, posted, transmitted, distributed or disclosed 15 * in any way without Intel's prior express written permission. No license under 16 * any patent, copyright or other intellectual property rights in the Material 17 * is granted to or conferred upon you, either expressly, by implication, 18 * inducement, estoppel or otherwise. Any license under such intellectual 19 * property rights must be express and approved by Intel in writing. 20 * 21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this 22 * notice or any other notice embedded in Materials by Intel or Intel's 23 * suppliers or licensors in any way. 24 * 25 * 26 * If this software was obtained under the Apache License, Version 2.0 (the 27 * "License"), the following terms apply: 28 * 29 * You may not use this file except in compliance with the License. You may 30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 31 * 32 * 33 * Unless required by applicable law or agreed to in writing, software 34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 36 * 37 * See the License for the specific language governing permissions and 38 * limitations under the License. 39 *******************************************************************************/ 40 41 /* 42 // Intel(R) Integrated Performance Primitives. Cryptography Primitives. 43 // Operations over GF(p). 44 // 45 // Context: 46 // ippsGFpMultiExp() 47 // 48 */ 49 #include "owndefs.h" 50 #include "owncp.h" 51 52 #include "pcpgfpstuff.h" 53 #include "pcpgfpxstuff.h" 54 #include "pcptool.h" 55 56 //tbcd: temporary excluded: #include <assert.h> 57 58 /*F* 59 // Name: ippsGFpMultiExp 60 // 61 // Purpose: Multiplies exponents of GF elements 62 // 63 // Returns: Reason: 64 // ippStsNullPtrErr NULL == pGFp 65 // NULL == ppElmA 66 // NULL == pR 67 // NULL == ppE 68 // 69 // ippStsContextMatchErr invalid pGFp->idCtx 70 // invalid ppElmA[i]->idCtx 71 // invalid pR->idCtx 72 // invalid ppE[i]->idCtx 73 // 74 // ippStsOutOfRangeErr GFPE_ROOM() != GFP_FELEN() 75 // 76 // ippStsBadArgErr 1>nItems 77 // nItems>6 78 // 79 // ippStsNoErr no error 80 // 81 // Parameters: 82 // ppElmA Pointer to the array of contexts of the finite field elements representing the base of the exponentiation. 83 // ppE Pointer to the array of the Big Number contexts storing the exponents. 84 // nItems Number of exponents. 85 // pR Pointer to the context of the resulting element of the finite field. 86 // pGFp Pointer to the context of the finite field. 87 // pScratchBuffer Pointer to the scratch buffer. 88 // 89 *F*/ 90 91 IPPFUN(IppStatus, ippsGFpMultiExp,(const IppsGFpElement* const ppElmA[], const IppsBigNumState* const ppE[], int nItems, 92 IppsGFpElement* pR, IppsGFpState* pGFp, 93 Ipp8u* pScratchBuffer)) 94 { 95 IPP_BAD_PTR2_RET(ppElmA, ppE); 96 97 if(nItems==1) 98 return ippsGFpExp(ppElmA[0], ppE[0], pR, pGFp, pScratchBuffer); 99 100 else { 101 /* test number of exponents */ 102 IPP_BADARG_RET(1>nItems || nItems>IPP_MAX_EXPONENT_NUM, ippStsBadArgErr); 103 104 IPP_BAD_PTR2_RET(pR, pGFp); 105 106 pGFp = (IppsGFpState*)( IPP_ALIGNED_PTR(pGFp, GFP_ALIGNMENT) ); 107 IPP_BADARG_RET( !GFP_TEST_ID(pGFp), ippStsContextMatchErr ); 108 IPP_BADARG_RET( !GFPE_TEST_ID(pR), ippStsContextMatchErr ); 109 { 110 int n; 111 112 gsModEngine* pGFE = GFP_PMA(pGFp); 113 IPP_BADARG_RET( GFPE_ROOM(pR)!=GFP_FELEN(pGFE), ippStsOutOfRangeErr); 114 115 /* test all ppElmA[] and ppE[] pairs */ 116 for(n=0; n<nItems; n++) { 117 const IppsGFpElement* pElmA = ppElmA[n]; 118 const IppsBigNumState* pE = ppE[n]; 119 IPP_BAD_PTR2_RET(pElmA, pE); 120 121 IPP_BADARG_RET( !GFPE_TEST_ID(pElmA), ippStsContextMatchErr ); 122 pE = (IppsBigNumState*)( IPP_ALIGNED_PTR(pE, BN_ALIGNMENT) ); 123 IPP_BADARG_RET( !BN_VALID_ID(pE), ippStsContextMatchErr ); 124 125 IPP_BADARG_RET( (GFPE_ROOM(pElmA)!=GFP_FELEN(pGFE)) || (GFPE_ROOM(pR)!=GFP_FELEN(pGFE)), ippStsOutOfRangeErr); 126 } 127 128 if(NULL==pScratchBuffer) { 129 mod_mul mulF = GFP_METHOD(pGFE)->mul; 130 131 BNU_CHUNK_T* pTmpR = cpGFpGetPool(1, pGFE); 132 //tbcd: temporary excluded: assert(NULL!=pTmpR); 133 134 cpGFpxExp(GFPE_DATA(pR), GFPE_DATA(ppElmA[0]), BN_NUMBER(ppE[0]), BN_SIZE(ppE[0]), pGFE, 0); 135 for(n=1; n<nItems; n++) { 136 cpGFpxExp(pTmpR, GFPE_DATA(ppElmA[n]), BN_NUMBER(ppE[n]), BN_SIZE(ppE[n]), pGFE, 0); 137 mulF(GFPE_DATA(pR), GFPE_DATA(pR), pTmpR, pGFE); 138 } 139 140 cpGFpReleasePool(1, pGFE); 141 } 142 143 else { 144 const BNU_CHUNK_T* ppAdata[IPP_MAX_EXPONENT_NUM]; 145 const BNU_CHUNK_T* ppEdata[IPP_MAX_EXPONENT_NUM]; 146 int nsEdataLen[IPP_MAX_EXPONENT_NUM]; 147 for(n=0; n<nItems; n++) { 148 ppAdata[n] = GFPE_DATA(ppElmA[n]); 149 ppEdata[n] = BN_NUMBER(ppE[n]); 150 nsEdataLen[n] = BN_SIZE(ppE[n]); 151 } 152 cpGFpxMultiExp(GFPE_DATA(pR), ppAdata, ppEdata, nsEdataLen, nItems, pGFE, pScratchBuffer); 153 } 154 155 return ippStsNoErr; 156 } 157 } 158 } 159