1 /*******************************************************************************
2 * Copyright 2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //     Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 //     GF(p^d) methods, if binomial generator over GF((p^2)^3)
44 //
45 */
46 #include "owncp.h"
47 
48 #include "pcpgfpxstuff.h"
49 #include "pcpgfpxmethod_com.h"
50 #include "pcpgfpxmethod_binom_epid2.h"
51 
52 //tbcd: temporary excluded: #include <assert.h>
53 
54 /*
55 // Intel(R) Enhanced Privacy ID (Intel(R) EPID) 2.0 specific.
56 //
57 // Intel(R) EPID 2.0 uses the following finite field hierarchy:
58 //
59 // 1) prime field GF(p),
60 //    p = 0xFFFFFFFFFFFCF0CD46E5F25EEE71A49F0CDC65FB12980A82D3292DDBAED33013
61 //
62 // 2) 2-degree extension of GF(p): GF(p^2) == GF(p)[x]/g(x), g(x) = x^2 -beta,
63 //    beta =-1 mod p, so "beta" represents as {1}
64 //
65 // 3) 3-degree extension of GF(p^2) ~ GF(p^6): GF((p^2)^3) == GF(p)[v]/g(v), g(v) = v^3 -xi,
66 //    xi belongs GF(p^2), xi=x+2, so "xi" represents as {2,1} ---- "2" is low- and "1" is high-order coefficients
67 //
68 // 4) 2-degree extension of GF((p^2)^3) ~ GF(p^12): GF(((p^2)^3)^2) == GF(p)[w]/g(w), g(w) = w^2 -vi,
69 //    psi belongs GF((p^2)^3), vi=0*v^2 +1*v +0, so "vi" represents as {0,1,0}---- "0", '1" and "0" are low-, middle- and high-order coefficients
70 //
71 // See representations in t_gfpparam.cpp
72 //
73 */
74 
75 /*
76 // Intel(R) EPID 2.0 specific
77 // ~~~~~~~~~~~~~~~
78 //
79 // Multiplication over GF((p^2)^3)
80 //    - field polynomial: g(v) = v^3 - xi  => binominal with specific value of "xi"
81 //    - xi = x+2
82 */
cpGFpxMul_p3_binom_epid2(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,const BNU_CHUNK_T * pB,gsEngine * pGFEx)83 static BNU_CHUNK_T* cpGFpxMul_p3_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx)
84 {
85    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
86    int groundElemLen = GFP_FELEN(pGroundGFE);
87 
88    mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
89    mod_add addF = GFP_METHOD(pGroundGFE)->add;
90    mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
91 
92    const BNU_CHUNK_T* pA0 = pA;
93    const BNU_CHUNK_T* pA1 = pA+groundElemLen;
94    const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
95 
96    const BNU_CHUNK_T* pB0 = pB;
97    const BNU_CHUNK_T* pB1 = pB+groundElemLen;
98    const BNU_CHUNK_T* pB2 = pB+groundElemLen*2;
99 
100    BNU_CHUNK_T* pR0 = pR;
101    BNU_CHUNK_T* pR1 = pR+groundElemLen;
102    BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
103 
104    BNU_CHUNK_T* t0 = cpGFpGetPool(6, pGroundGFE);
105    BNU_CHUNK_T* t1 = t0+groundElemLen;
106    BNU_CHUNK_T* t2 = t1+groundElemLen;
107    BNU_CHUNK_T* u0 = t2+groundElemLen;
108    BNU_CHUNK_T* u1 = u0+groundElemLen;
109    BNU_CHUNK_T* u2 = u1+groundElemLen;
110    //tbcd: temporary excluded: assert(NULL!=t0);
111 
112    addF(u0 ,pA0, pA1, pGroundGFE);    /* u0 = a[0]+a[1] */
113    addF(t0 ,pB0, pB1, pGroundGFE);    /* t0 = b[0]+b[1] */
114    mulF(u0, u0,  t0,  pGroundGFE);    /* u0 = (a[0]+a[1])*(b[0]+b[1]) */
115    mulF(t0, pA0, pB0, pGroundGFE);    /* t0 = a[0]*b[0] */
116 
117    addF(u1 ,pA1, pA2, pGroundGFE);    /* u1 = a[1]+a[2] */
118    addF(t1 ,pB1, pB2, pGroundGFE);    /* t1 = b[1]+b[2] */
119    mulF(u1, u1,  t1,  pGroundGFE);    /* u1 = (a[1]+a[2])*(b[1]+b[2]) */
120    mulF(t1, pA1, pB1, pGroundGFE);    /* t1 = a[1]*b[1] */
121 
122    addF(u2 ,pA2, pA0, pGroundGFE);    /* u2 = a[2]+a[0] */
123    addF(t2 ,pB2, pB0, pGroundGFE);    /* t2 = b[2]+b[0] */
124    mulF(u2, u2,  t2,  pGroundGFE);    /* u2 = (a[2]+a[0])*(b[2]+b[0]) */
125    mulF(t2, pA2, pB2, pGroundGFE);    /* t2 = a[2]*b[2] */
126 
127    subF(u0, u0,  t0,  pGroundGFE);    /* u0 = a[0]*b[1]+a[1]*b[0] */
128    subF(u0, u0,  t1,  pGroundGFE);
129    subF(u1, u1,  t1,  pGroundGFE);    /* u1 = a[1]*b[2]+a[2]*b[1] */
130    subF(u1, u1,  t2,  pGroundGFE);
131    subF(u2, u2,  t2,  pGroundGFE);    /* u2 = a[2]*b[0]+a[0]*b[2] */
132    subF(u2, u2,  t0,  pGroundGFE);
133 
134    /* Intel(R) EPID 2.0 specific */
135    {
136       int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx);
137 
138       /* deal with GF(p^2^3) */
139       if(basicExtDegree==6) {
140          cpFq2Mul_xi(u1, u1, pGroundGFE);
141          cpFq2Mul_xi(t2, t2, pGroundGFE);
142          addF(pR0, t0, u1,  pGroundGFE);  /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */
143          addF(pR1, u0, t2,  pGroundGFE);  /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */
144       }
145       /* just  a case */
146       else {
147          cpGFpxMul_G0(u1, u1, pGFEx);     /* u1 = (a[1]*b[2]+a[2]*b[1]) * beta */
148          cpGFpxMul_G0(t2, t2, pGFEx);     /* t2 = a[2]*b[2] * beta */
149          subF(pR0, t0, u1,  pGroundGFE);  /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */
150          subF(pR1, u0, t2,  pGroundGFE);  /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */
151       }
152    }
153 
154    addF(pR2, u2, t1,  pGroundGFE);       /* r[2] = a[2]*b[0] + a[1]*b[1] + a[0]*b[2] */
155 
156    cpGFpReleasePool(6, pGroundGFE);
157    return pR;
158 }
159 
160 /*
161 // Intel(R) EPID 2.0 specific
162 // ~~~~~~~~~~~~~~~
163 //
164 // Squaring over GF((p^2)^3)
165 //    - field polynomial: g(v) = v^3 - xi  => binominal with specific value of "xi"
166 //    - xi = x+2
167 */
cpGFpxSqr_p3_binom_epid2(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)168 static BNU_CHUNK_T* cpGFpxSqr_p3_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
169 {
170    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
171    int groundElemLen = GFP_FELEN(pGroundGFE);
172 
173    mod_mul mulF = GFP_METHOD(pGroundGFE)->mul;
174    mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr;
175    mod_add addF = GFP_METHOD(pGroundGFE)->add;
176    mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
177 
178    const BNU_CHUNK_T* pA0 = pA;
179    const BNU_CHUNK_T* pA1 = pA+groundElemLen;
180    const BNU_CHUNK_T* pA2 = pA+groundElemLen*2;
181 
182    BNU_CHUNK_T* pR0 = pR;
183    BNU_CHUNK_T* pR1 = pR+groundElemLen;
184    BNU_CHUNK_T* pR2 = pR+groundElemLen*2;
185 
186    BNU_CHUNK_T* s0 = cpGFpGetPool(5, pGroundGFE);
187    BNU_CHUNK_T* s1 = s0+groundElemLen;
188    BNU_CHUNK_T* s2 = s1+groundElemLen;
189    BNU_CHUNK_T* s3 = s2+groundElemLen;
190    BNU_CHUNK_T* s4 = s3+groundElemLen;
191 
192    addF(s2, pA0, pA2, pGroundGFE);
193    subF(s2,  s2, pA1, pGroundGFE);
194    sqrF(s2,  s2, pGroundGFE);
195    sqrF(s0, pA0, pGroundGFE);
196    sqrF(s4, pA2, pGroundGFE);
197    mulF(s1, pA0, pA1, pGroundGFE);
198    mulF(s3, pA1, pA2, pGroundGFE);
199    addF(s1,  s1,  s1, pGroundGFE);
200    addF(s3,  s3,  s3, pGroundGFE);
201 
202    addF(pR2,  s1, s2, pGroundGFE);
203    addF(pR2, pR2, s3, pGroundGFE);
204    subF(pR2, pR2, s0, pGroundGFE);
205    subF(pR2, pR2, s4, pGroundGFE);
206 
207    /* Intel(R) EPID 2.0 specific */
208    {
209       int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx);
210 
211       /* deal with GF(p^2^3) */
212       if(basicExtDegree==6) {
213          cpFq2Mul_xi(s4, s4, pGroundGFE);
214          cpFq2Mul_xi(s3, s3, pGroundGFE);
215          addF(pR1, s1,  s4, pGroundGFE);
216          addF(pR0, s0,  s3, pGroundGFE);
217       }
218       /* just a case */
219       else {
220          cpGFpxMul_G0(s4, s4, pGFEx);
221          cpGFpxMul_G0(s3, s3, pGFEx);
222          subF(pR1, s1,  s4, pGroundGFE);
223          subF(pR0, s0,  s3, pGroundGFE);
224       }
225    }
226 
227    cpGFpReleasePool(5, pGroundGFE);
228    return pR;
229 }
230 
231 /*
232 // return specific polynomi alarith methods
233 // polynomial - deg 3 binomial (Intel(R) EPID 2.0)
234 */
gsPolyArith_binom3_epid2(void)235 static gsModMethod* gsPolyArith_binom3_epid2(void)
236 {
237    static gsModMethod m = {
238       cpGFpxEncode_com,
239       cpGFpxDecode_com,
240       cpGFpxMul_p3_binom_epid2,
241       cpGFpxSqr_p3_binom_epid2,
242       NULL,
243       cpGFpxAdd_com,
244       cpGFpxSub_com,
245       cpGFpxNeg_com,
246       cpGFpxDiv2_com,
247       cpGFpxMul2_com,
248       cpGFpxMul3_com,
249       //cpGFpxInv
250    };
251    return &m;
252 }
253 
254 /*F*
255 // Name: ippsGFpxMethod_binom3_epid2
256 //
257 // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd).
258 //
259 // Returns:          pointer to a structure containing
260 //                   an implementation of arithmetic operations over GF(pd)
261 //                   g(v) = v^3 - U0, U0 from GF(q^2), U0 = u + 2
262 //
263 //
264 *F*/
265 
266 IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom3_epid2, (void) )
267 {
268    static IppsGFpMethod method = {
269       cpID_Binom3_epid20,
270       3,
271       NULL,
272       NULL
273    };
274    method.arith = gsPolyArith_binom3_epid2();
275    return &method;
276 }
277