1 /*******************************************************************************
2 * Copyright 2002-2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //               Intel(R) Integrated Performance Primitives
43 //                   Cryptographic Primitives (ippcp)
44 //
45 //  Contents:
46 //        ippsMontMul()
47 //
48 */
49 
50 #include "owndefs.h"
51 #include "owncp.h"
52 #include "pcpbn.h"
53 #include "pcpmontgomery.h"
54 #include "pcptool.h"
55 
56 /*F*
57 // Name: ippsMontMul
58 //
59 // Purpose: Computes Montgomery modular multiplication for positive big
60 //      number integers of Montgomery form. The following pseudocode
61 //      represents this function:
62 //      r <- ( a * b * R^(-1) ) mod m
63 //
64 // Returns:                Reason:
65 //      ippStsNoErr         Returns no error.
66 //      ippStsNullPtrErr    Returns an error when pointers are null.
67 //      ippStsBadArgErr     Returns an error when a or b is a negative integer.
68 //      ippStsScaleRangeErr Returns an error when a or b is more than m.
69 //      ippStsOutOfRangeErr Returns an error when IppsBigNumState *r is larger than
70 //                          IppsMontState *m.
71 //      ippStsContextMatchErr Returns an error when the context parameter does
72 //                          not match the operation.
73 //
74 // Parameters:
75 //      pA   Multiplicand within the range [0, m - 1].
76 //      pB   Multiplier within the range [0, m - 1].
77 //      pCtx Modulus.
78 //      pR   Montgomery multiplication result.
79 //
80 // Notes: The size of IppsBigNumState *r should not be less than the data
81 //      length of the modulus m.
82 *F*/
83 IPPFUN(IppStatus, ippsMontMul, (const IppsBigNumState* pA, const IppsBigNumState* pB, IppsMontState* pCtx, IppsBigNumState* pR))
84 {
85    IPP_BAD_PTR4_RET(pA, pB, pCtx, pR);
86 
87    pCtx = (IppsMontState*)(IPP_ALIGNED_PTR((pCtx), MONT_ALIGNMENT));
88    pA = (IppsBigNumState*)( IPP_ALIGNED_PTR(pA, BN_ALIGNMENT) );
89    pB = (IppsBigNumState*)( IPP_ALIGNED_PTR(pB, BN_ALIGNMENT) );
90    pR = (IppsBigNumState*)( IPP_ALIGNED_PTR(pR, BN_ALIGNMENT) );
91 
92    IPP_BADARG_RET(!MNT_VALID_ID(pCtx), ippStsContextMatchErr);
93    IPP_BADARG_RET(!BN_VALID_ID(pA), ippStsContextMatchErr);
94    IPP_BADARG_RET(!BN_VALID_ID(pB), ippStsContextMatchErr);
95    IPP_BADARG_RET(!BN_VALID_ID(pR), ippStsContextMatchErr);
96 
97    IPP_BADARG_RET(BN_NEGATIVE(pA) || BN_NEGATIVE(pB), ippStsBadArgErr);
98    IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pA), BN_SIZE(pA), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr);
99    IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pB), BN_SIZE(pB), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr);
100    IPP_BADARG_RET(BN_ROOM(pR) < MOD_LEN( MNT_ENGINE(pCtx) ), ippStsOutOfRangeErr);
101 
102    {
103       const int usedPoolLen = 2;
104       cpSize nsM = MOD_LEN( MNT_ENGINE(pCtx) );
105       BNU_CHUNK_T* pDataR  = BN_NUMBER(pR);
106       BNU_CHUNK_T* pDataA  = gsModPoolAlloc(MNT_ENGINE(pCtx), usedPoolLen);
107       BNU_CHUNK_T* pDataB  = pDataA + nsM;
108       //tbcd: temporary excluded: assert(NULL!=pDataA);
109 
110       ZEXPAND_COPY_BNU(pDataA, nsM, BN_NUMBER(pA), BN_SIZE(pA));
111       ZEXPAND_COPY_BNU(pDataB, nsM, BN_NUMBER(pB), BN_SIZE(pB));
112 
113       MOD_METHOD( MNT_ENGINE(pCtx) )->mul(pDataR, pDataA, pDataB, MNT_ENGINE(pCtx));
114 
115       gsModPoolFree(MNT_ENGINE(pCtx), usedPoolLen);
116 
117       FIX_BNU(pDataR, nsM);
118       BN_SIZE(pR) = nsM;
119       BN_SIGN(pR) = ippBigNumPOS;
120 
121       return ippStsNoErr;
122    }
123 }
124