1 // Example command line to build on Android ARM64:
2 /*
3 ~/android/toolchains/r15c-aarch64/bin/aarch64-linux-android-clang++ \
4 test/benchmark_all_sizes.cc -o /tmp/b -O3 --std=c++11 -fPIE -static \
5 -DBENCHMARK_QUICK -DBENCHMARK_8bit
6 */
7
8 #include <algorithm>
9 #include <cmath>
10 #include <cstdint>
11 #include <ctime>
12 #include <iostream>
13 #include <map>
14 #include <random>
15 #include <set>
16
17 #include "../public/gemmlowp.h"
18
19 #if defined GEMMLOWP_ANDROID && defined GEMMLOWP_ARM_32
20 // Compilation workaround
21 namespace std {
22 using ::round;
23 }
24 #endif
25
26 // Minimum duration of each benchmark measurement. Also, duration
27 // of sleep time between each two consecutive benchmark measurements to
28 // prevent over-heating.
29 const double kBenchmarkSecs = 0.1;
30
31 // Sleep time before each benchmark.
32 const int kCooldownBeforeBenchmarkSecs = 0;
33
34 // Number of benchmark passes.
35 const int kPasses = 4;
36
37 #ifdef BENCHMARK_NUM_THREADS
38 const int kNumThreads = BENCHMARK_NUM_THREADS;
39 #else
40 const int kNumThreads = 1;
41 #endif
42
43 namespace gemmlowp {
44
45 // gemmlowp itself doesn't have a Matrix class, only a MatrixMap class,
46 // since it only maps existing data. In tests though, we need to
47 // create our own matrices.
48 template <typename tScalar, MapOrder tOrder>
49 class Matrix : public MatrixMap<tScalar, tOrder> {
50 public:
51 typedef MatrixMap<tScalar, tOrder> Map;
52 typedef MatrixMap<const tScalar, tOrder> ConstMap;
53 typedef typename Map::Scalar Scalar;
54 static const MapOrder Order = tOrder;
55 using Map::cols_;
56 using Map::data_;
57 using Map::kOrder;
58 using Map::rows_;
59 using Map::stride_;
60
61 public:
Matrix()62 Matrix() : Map(nullptr, 0, 0, 0) {}
63
Matrix(int rows,int cols)64 Matrix(int rows, int cols) : Map(nullptr, 0, 0, 0) { Resize(rows, cols); }
65
Matrix(const Matrix & other)66 Matrix(const Matrix& other) : Map(nullptr, 0, 0, 0) { *this = other; }
67
operator =(const Matrix & other)68 Matrix& operator=(const Matrix& other) {
69 Resize(other.rows_, other.cols_);
70 std::memcpy(data_, other.data_, size() * sizeof(Scalar));
71 return *this;
72 }
73
operator ==(const Matrix & a,const Matrix & b)74 friend bool operator==(const Matrix& a, const Matrix& b) {
75 return a.rows_ == b.rows_ && a.cols_ == b.cols_ &&
76 !std::memcmp(a.data_, b.data_, a.size());
77 }
78
Resize(int rows,int cols)79 void Resize(int rows, int cols) {
80 rows_ = rows;
81 cols_ = cols;
82 stride_ = kOrder == MapOrder::ColMajor ? rows : cols;
83 storage.resize(size());
84 data_ = storage.data();
85 }
86
size() const87 int size() const { return rows_ * cols_; }
88
map()89 Map& map() { return *static_cast<Map*>(this); }
90
const_map() const91 ConstMap const_map() const { return ConstMap(data_, rows_, cols_, stride_); }
92
93 protected:
94 std::vector<Scalar> storage;
95 };
96
97 template <typename MatrixType>
MakeZero(MatrixType * m)98 void MakeZero(MatrixType* m) {
99 for (int c = 0; c < m->cols(); c++) {
100 for (int r = 0; r < m->rows(); r++) {
101 (*m)(r, c) = 128;
102 }
103 }
104 }
105
106 } // end namespace gemmlowp
107
108 template <typename BitDepthParams>
benchmark_8bit(int rows,int depth,int cols)109 float benchmark_8bit(int rows, int depth, int cols) {
110 using namespace gemmlowp;
111 typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
112 typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
113 typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType;
114
115 LhsType lhs;
116 RhsType rhs;
117 ResultType result;
118 lhs.Resize(rows, depth);
119 rhs.Resize(depth, cols);
120 result.Resize(rows, cols);
121 MakeZero(&lhs);
122 MakeZero(&rhs);
123 MakeZero(&result);
124
125 typedef std::tuple<OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint,
126 OutputStageSaturatingCastToUint8>
127 Pipeline;
128 gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint
129 quantize_down_stage;
130 quantize_down_stage.result_offset_after_shift = 128;
131 quantize_down_stage.result_fixedpoint_multiplier = 1234567890;
132 quantize_down_stage.result_shift = 16;
133 gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
134 const auto output_pipeline =
135 std::make_tuple(quantize_down_stage, saturating_cast_stage);
136 GemmContext gemm_context;
137 gemm_context.set_max_num_threads(kNumThreads);
138 gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t, BitDepthParams>(
139 &gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
140 -128, output_pipeline);
141
142 double time_start = real_time_in_seconds();
143 double t = time_start;
144 int iters = 0;
145 int iters_at_a_time = 1;
146 while (t - time_start < kBenchmarkSecs) {
147 for (int i = 0; i < iters_at_a_time; i++) {
148 gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::uint8_t,
149 BitDepthParams>(
150 &gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
151 -128, output_pipeline);
152 iters++;
153 }
154 iters_at_a_time *= 2;
155 t = real_time_in_seconds();
156 }
157 return (t - time_start) / iters;
158 }
159
160 template <typename BitDepthParams>
benchmark_8bit_to_32bit(int rows,int depth,int cols)161 float benchmark_8bit_to_32bit(int rows, int depth, int cols) {
162 using namespace gemmlowp;
163 typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
164 typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
165 typedef Matrix<std::int32_t, MapOrder::ColMajor> ResultType;
166
167 LhsType lhs;
168 RhsType rhs;
169 ResultType result;
170 lhs.Resize(rows, depth);
171 rhs.Resize(depth, cols);
172 result.Resize(rows, cols);
173 MakeZero(&lhs);
174 MakeZero(&rhs);
175 MakeZero(&result);
176
177 typedef std::tuple<> EmptyPipeline;
178 GemmContext gemm_context;
179 gemm_context.set_max_num_threads(kNumThreads);
180 gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t, BitDepthParams>(
181 &gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
182 -128, EmptyPipeline());
183
184 double time_start = real_time_in_seconds();
185 double t = time_start;
186 int iters = 0;
187 int iters_at_a_time = 1;
188 while (t - time_start < kBenchmarkSecs) {
189 for (int i = 0; i < iters_at_a_time; i++) {
190 gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t,
191 BitDepthParams>(
192 &gemm_context, lhs.const_map(), rhs.const_map(), &result.map(), -128,
193 -128, EmptyPipeline());
194 iters++;
195 }
196 iters_at_a_time *= 2;
197 t = real_time_in_seconds();
198 }
199 return (t - time_start) / iters;
200 }
201
202 struct Shape {
203 int rows;
204 int depth;
205 int cols;
206 };
207
operator ==(const Shape & s1,const Shape & s2)208 bool operator==(const Shape& s1, const Shape& s2) {
209 return s1.rows == s2.rows && s1.depth == s2.depth && s1.cols == s2.cols;
210 }
211
operator <(const Shape & shape1,const Shape & shape2)212 bool operator<(const Shape& shape1, const Shape& shape2) {
213 return shape1.depth < shape2.depth ||
214 (shape1.depth == shape2.depth &&
215 (shape1.rows < shape2.rows ||
216 (shape1.rows == shape2.rows && shape1.cols < shape2.cols)));
217 };
218
219 #ifdef _WIN32
220 #define sleep(t) Sleep(t)
221 #endif
222
benchmark(const Shape & shape)223 float benchmark(const Shape& shape) {
224 if (kCooldownBeforeBenchmarkSecs) {
225 sleep(kCooldownBeforeBenchmarkSecs);
226 }
227 #if defined BENCHMARK_8bit
228 // Benchmark the fast 8bit path, using L8R8WithLhsNonzeroBitDepthParams.
229 // This is the recommended thing to default to: it's what most applications
230 // want to use, as it's the fastest.
231 // The contract is that LHS must take values in [1, 255], while RHS can take
232 // any value in [0, 255].
233 return benchmark_8bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
234 shape.rows, shape.depth, shape.cols);
235 #elif defined BENCHMARK_8bit_wide
236 // Variant benchmarking the slower (mostly legacy) DefaultL8R8BitDepthParams.
237 // The only contract difference is that both LHS and RHS can take values in
238 // [0, 255].
239 return benchmark_8bit<gemmlowp::DefaultL8R8BitDepthParams>(
240 shape.rows, shape.depth, shape.cols);
241 #elif defined BENCHMARK_8bit_to_32bit
242 // Variant of BENCHMARK_8bit where the user asks for getting raw int32
243 // accumulators, instead of a 8bit-downscaled result.
244 return benchmark_8bit_to_32bit<gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
245 shape.rows, shape.depth, shape.cols);
246 #elif defined BENCHMARK_8bit_to_32bit_wide
247 // Variant of BENCHMARK_8bit_wide where the user asks for getting raw int32
248 // accumulators, instead of a 8bit-downscaled result.
249 return benchmark_8bit_to_32bit<gemmlowp::DefaultL8R8BitDepthParams>(
250 shape.rows, shape.depth, shape.cols);
251 #elif defined BENCHMARK_float
252 return benchmark_float(shape.rows, shape.depth, shape.cols);
253 #else
254 #error What arithmetic path should we benchmark? (Suggestion: #define BENCHMARK_8bit)
255 #endif
256 }
257
all_sizes()258 std::set<int> all_sizes() {
259 std::set<int> sizes;
260 for (int i = 1; i <= 2048; i *= 2) {
261 sizes.insert(i);
262 }
263 for (double x = 8; x <= 2048; x *= std::sqrt(2.)) {
264 sizes.insert(static_cast<int>(std::round(x)));
265 }
266 for (double x = 16; x <= 512; x *= std::pow(2., 1. / 4.)) {
267 sizes.insert(static_cast<int>(std::round(x)));
268 }
269 return sizes;
270 }
271
RandomEngine()272 std::mt19937& RandomEngine() {
273 static std::mt19937 engine;
274 return engine;
275 }
276
all_shapes_in_random_order()277 std::vector<Shape> all_shapes_in_random_order() {
278 std::vector<Shape> shapes;
279 const std::set<int> sizes = all_sizes();
280 #if defined BENCHMARK_ROWS
281 // Benchmark one specific shape
282 Shape shape;
283 shape.rows = BENCHMARK_ROWS;
284 shape.depth = BENCHMARK_DEPTH;
285 shape.cols = BENCHMARK_COLS;
286 shapes.push_back(shape);
287 #elif defined BENCHMARK_QUICK
288 // Benchmark an assortment of cubic shapes
289 for (int size : sizes) {
290 Shape shape;
291 shape.rows = size;
292 shape.depth = size;
293 shape.cols = size;
294 shapes.push_back(shape);
295 }
296 #elif defined BENCHMARK_EXHAUSTIVE
297 // Benchmark all sorts of shapes
298 for (int rows : sizes) {
299 for (int depth : sizes) {
300 for (int cols : sizes) {
301 Shape shape;
302 shape.rows = rows;
303 shape.depth = depth;
304 shape.cols = cols;
305 shapes.push_back(shape);
306 }
307 }
308 }
309 #else
310 #error What shapes should we benchmark? (Suggestion: #define BENCHMARK_QUICK)
311 #endif
312 std::shuffle(std::begin(shapes), std::end(shapes), RandomEngine());
313 return shapes;
314 }
315
run_benchmarks(std::map<Shape,float> * results)316 void run_benchmarks(std::map<Shape, float>* results) {
317 std::vector<Shape> shapes;
318 for (int pass = 0; pass < kPasses; pass++) {
319 const std::vector<Shape> pass_shapes = all_shapes_in_random_order();
320 shapes.insert(std::end(shapes), std::begin(pass_shapes),
321 std::end(pass_shapes));
322 }
323
324 const double time_start = gemmlowp::real_time_in_seconds();
325 for (std::size_t i = 0; i < shapes.size(); i++) {
326 const double ratio = static_cast<double>(i) / shapes.size();
327 const double elapsed = gemmlowp::real_time_in_seconds() - time_start;
328 const double elapsed_hours = elapsed / 3600.;
329 const double eta_hours = elapsed_hours * (1. - ratio) / ratio;
330 fprintf(stderr,
331 "Benchmarking: %.2f%% done, Elapsed: %.2f hours, ETA: %.2f "
332 "hours... \r",
333 100. * ratio, elapsed_hours, eta_hours);
334 fflush(stderr);
335 const Shape& shape = shapes[i];
336 float latency = benchmark(shape);
337 if (results->count(shape)) {
338 (*results)[shape] = std::min(latency, (*results)[shape]);
339 } else {
340 (*results)[shape] = latency;
341 }
342 }
343 fprintf(stderr, "\n");
344 }
345
main()346 int main() {
347 std::map<Shape, float> results;
348 run_benchmarks(&results);
349 printf("Using %d thread(s)\n", kNumThreads);
350 printf("depth,rows,cols,latency(s),Gop/s\n");
351 for (const auto& result : results) {
352 const Shape& shape = result.first;
353 printf("%d,%d,%d,%.4g,%.4g\n", shape.depth, shape.rows, shape.cols,
354 result.second,
355 2e-9 * shape.depth * shape.rows * shape.cols / result.second);
356 }
357 }
358