1# benchmark 2[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark) 3[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master) 4[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark) 5[![slackin](https://slackin-iqtfqnpzxd.now.sh/badge.svg)](https://slackin-iqtfqnpzxd.now.sh/) 6 7A library to support the benchmarking of functions, similar to unit-tests. 8 9[Discussion group](https://groups.google.com/d/forum/benchmark-discuss) 10 11IRC channel: [freenode](https://freenode.net) #googlebenchmark 12 13[Additional Tooling Documentation](docs/tools.md) 14 15[Assembly Testing Documentation](docs/AssemblyTests.md) 16 17 18## Building 19 20The basic steps for configuring and building the library look like this: 21 22```bash 23$ git clone https://github.com/google/benchmark.git 24# Benchmark requires Google Test as a dependency. Add the source tree as a subdirectory. 25$ git clone https://github.com/google/googletest.git benchmark/googletest 26$ mkdir build && cd build 27$ cmake -G <generator> [options] ../benchmark 28# Assuming a makefile generator was used 29$ make 30``` 31 32Note that Google Benchmark requires Google Test to build and run the tests. This 33dependency can be provided two ways: 34 35* Checkout the Google Test sources into `benchmark/googletest` as above. 36* Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during 37 configuration, the library will automatically download and build any required 38 dependencies. 39 40If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF` 41to `CMAKE_ARGS`. 42 43 44## Installation Guide 45 46For Ubuntu and Debian Based System 47 48First make sure you have git and cmake installed (If not please install them) 49 50``` 51sudo apt-get install git cmake 52``` 53 54Now, let's clone the repository and build it 55 56``` 57git clone https://github.com/google/benchmark.git 58cd benchmark 59# If you want to build tests and don't use BENCHMARK_DOWNLOAD_DEPENDENCIES, then 60# git clone https://github.com/google/googletest.git 61mkdir build 62cd build 63cmake .. -DCMAKE_BUILD_TYPE=RELEASE 64make 65``` 66 67If you need to install the library globally 68 69``` 70sudo make install 71``` 72 73## Stable and Experimental Library Versions 74 75The main branch contains the latest stable version of the benchmarking library; 76the API of which can be considered largely stable, with source breaking changes 77being made only upon the release of a new major version. 78 79Newer, experimental, features are implemented and tested on the 80[`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish 81to use, test, and provide feedback on the new features are encouraged to try 82this branch. However, this branch provides no stability guarantees and reserves 83the right to change and break the API at any time. 84 85## Further knowledge 86 87It may help to read the [Google Test documentation](https://github.com/google/googletest/blob/master/googletest/docs/primer.md) 88as some of the structural aspects of the APIs are similar. 89 90## Example usage 91### Basic usage 92Define a function that executes the code to be measured, register it as a 93benchmark function using the `BENCHMARK` macro, and ensure an appropriate `main` 94function is available: 95 96```c++ 97#include <benchmark/benchmark.h> 98 99static void BM_StringCreation(benchmark::State& state) { 100 for (auto _ : state) 101 std::string empty_string; 102} 103// Register the function as a benchmark 104BENCHMARK(BM_StringCreation); 105 106// Define another benchmark 107static void BM_StringCopy(benchmark::State& state) { 108 std::string x = "hello"; 109 for (auto _ : state) 110 std::string copy(x); 111} 112BENCHMARK(BM_StringCopy); 113 114BENCHMARK_MAIN(); 115``` 116 117Don't forget to inform your linker to add benchmark library e.g. through 118`-lbenchmark` compilation flag. Alternatively, you may leave out the 119`BENCHMARK_MAIN();` at the end of the source file and link against 120`-lbenchmark_main` to get the same default behavior. 121 122The benchmark library will measure and report the timing for code within the 123`for(...)` loop. 124 125#### Platform-specific libraries 126When the library is built using GCC it is necessary to link with the pthread 127library due to how GCC implements `std::thread`. Failing to link to pthread will 128lead to runtime exceptions (unless you're using libc++), not linker errors. See 129[issue #67](https://github.com/google/benchmark/issues/67) for more details. You 130can link to pthread by adding `-pthread` to your linker command. Note, you can 131also use `-lpthread`, but there are potential issues with ordering of command 132line parameters if you use that. 133 134If you're running benchmarks on Windows, the shlwapi library (`-lshlwapi`) is 135also required. 136 137If you're running benchmarks on solaris, you'll want the kstat library linked in 138too (`-lkstat`). 139 140### Passing arguments 141Sometimes a family of benchmarks can be implemented with just one routine that 142takes an extra argument to specify which one of the family of benchmarks to 143run. For example, the following code defines a family of benchmarks for 144measuring the speed of `memcpy()` calls of different lengths: 145 146```c++ 147static void BM_memcpy(benchmark::State& state) { 148 char* src = new char[state.range(0)]; 149 char* dst = new char[state.range(0)]; 150 memset(src, 'x', state.range(0)); 151 for (auto _ : state) 152 memcpy(dst, src, state.range(0)); 153 state.SetBytesProcessed(int64_t(state.iterations()) * 154 int64_t(state.range(0))); 155 delete[] src; 156 delete[] dst; 157} 158BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 159``` 160 161The preceding code is quite repetitive, and can be replaced with the following 162short-hand. The following invocation will pick a few appropriate arguments in 163the specified range and will generate a benchmark for each such argument. 164 165```c++ 166BENCHMARK(BM_memcpy)->Range(8, 8<<10); 167``` 168 169By default the arguments in the range are generated in multiples of eight and 170the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the 171range multiplier is changed to multiples of two. 172 173```c++ 174BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); 175``` 176Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. 177 178You might have a benchmark that depends on two or more inputs. For example, the 179following code defines a family of benchmarks for measuring the speed of set 180insertion. 181 182```c++ 183static void BM_SetInsert(benchmark::State& state) { 184 std::set<int> data; 185 for (auto _ : state) { 186 state.PauseTiming(); 187 data = ConstructRandomSet(state.range(0)); 188 state.ResumeTiming(); 189 for (int j = 0; j < state.range(1); ++j) 190 data.insert(RandomNumber()); 191 } 192} 193BENCHMARK(BM_SetInsert) 194 ->Args({1<<10, 128}) 195 ->Args({2<<10, 128}) 196 ->Args({4<<10, 128}) 197 ->Args({8<<10, 128}) 198 ->Args({1<<10, 512}) 199 ->Args({2<<10, 512}) 200 ->Args({4<<10, 512}) 201 ->Args({8<<10, 512}); 202``` 203 204The preceding code is quite repetitive, and can be replaced with the following 205short-hand. The following macro will pick a few appropriate arguments in the 206product of the two specified ranges and will generate a benchmark for each such 207pair. 208 209```c++ 210BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}}); 211``` 212 213For more complex patterns of inputs, passing a custom function to `Apply` allows 214programmatic specification of an arbitrary set of arguments on which to run the 215benchmark. The following example enumerates a dense range on one parameter, 216and a sparse range on the second. 217 218```c++ 219static void CustomArguments(benchmark::internal::Benchmark* b) { 220 for (int i = 0; i <= 10; ++i) 221 for (int j = 32; j <= 1024*1024; j *= 8) 222 b->Args({i, j}); 223} 224BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 225``` 226 227### Calculate asymptotic complexity (Big O) 228Asymptotic complexity might be calculated for a family of benchmarks. The 229following code will calculate the coefficient for the high-order term in the 230running time and the normalized root-mean square error of string comparison. 231 232```c++ 233static void BM_StringCompare(benchmark::State& state) { 234 std::string s1(state.range(0), '-'); 235 std::string s2(state.range(0), '-'); 236 for (auto _ : state) { 237 benchmark::DoNotOptimize(s1.compare(s2)); 238 } 239 state.SetComplexityN(state.range(0)); 240} 241BENCHMARK(BM_StringCompare) 242 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); 243``` 244 245As shown in the following invocation, asymptotic complexity might also be 246calculated automatically. 247 248```c++ 249BENCHMARK(BM_StringCompare) 250 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); 251``` 252 253The following code will specify asymptotic complexity with a lambda function, 254that might be used to customize high-order term calculation. 255 256```c++ 257BENCHMARK(BM_StringCompare)->RangeMultiplier(2) 258 ->Range(1<<10, 1<<18)->Complexity([](int64_t n)->double{return n; }); 259``` 260 261### Templated benchmarks 262Templated benchmarks work the same way: This example produces and consumes 263messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the 264absence of multiprogramming. 265 266```c++ 267template <class Q> void BM_Sequential(benchmark::State& state) { 268 Q q; 269 typename Q::value_type v; 270 for (auto _ : state) { 271 for (int i = state.range(0); i--; ) 272 q.push(v); 273 for (int e = state.range(0); e--; ) 274 q.Wait(&v); 275 } 276 // actually messages, not bytes: 277 state.SetBytesProcessed( 278 static_cast<int64_t>(state.iterations())*state.range(0)); 279} 280BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 281``` 282 283Three macros are provided for adding benchmark templates. 284 285```c++ 286#ifdef BENCHMARK_HAS_CXX11 287#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. 288#else // C++ < C++11 289#define BENCHMARK_TEMPLATE(func, arg1) 290#endif 291#define BENCHMARK_TEMPLATE1(func, arg1) 292#define BENCHMARK_TEMPLATE2(func, arg1, arg2) 293``` 294 295### A Faster KeepRunning loop 296 297In C++11 mode, a ranged-based for loop should be used in preference to 298the `KeepRunning` loop for running the benchmarks. For example: 299 300```c++ 301static void BM_Fast(benchmark::State &state) { 302 for (auto _ : state) { 303 FastOperation(); 304 } 305} 306BENCHMARK(BM_Fast); 307``` 308 309The reason the ranged-for loop is faster than using `KeepRunning`, is 310because `KeepRunning` requires a memory load and store of the iteration count 311ever iteration, whereas the ranged-for variant is able to keep the iteration count 312in a register. 313 314For example, an empty inner loop of using the ranged-based for method looks like: 315 316```asm 317# Loop Init 318 mov rbx, qword ptr [r14 + 104] 319 call benchmark::State::StartKeepRunning() 320 test rbx, rbx 321 je .LoopEnd 322.LoopHeader: # =>This Inner Loop Header: Depth=1 323 add rbx, -1 324 jne .LoopHeader 325.LoopEnd: 326``` 327 328Compared to an empty `KeepRunning` loop, which looks like: 329 330```asm 331.LoopHeader: # in Loop: Header=BB0_3 Depth=1 332 cmp byte ptr [rbx], 1 333 jne .LoopInit 334.LoopBody: # =>This Inner Loop Header: Depth=1 335 mov rax, qword ptr [rbx + 8] 336 lea rcx, [rax + 1] 337 mov qword ptr [rbx + 8], rcx 338 cmp rax, qword ptr [rbx + 104] 339 jb .LoopHeader 340 jmp .LoopEnd 341.LoopInit: 342 mov rdi, rbx 343 call benchmark::State::StartKeepRunning() 344 jmp .LoopBody 345.LoopEnd: 346``` 347 348Unless C++03 compatibility is required, the ranged-for variant of writing 349the benchmark loop should be preferred. 350 351## Passing arbitrary arguments to a benchmark 352In C++11 it is possible to define a benchmark that takes an arbitrary number 353of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` 354macro creates a benchmark that invokes `func` with the `benchmark::State` as 355the first argument followed by the specified `args...`. 356The `test_case_name` is appended to the name of the benchmark and 357should describe the values passed. 358 359```c++ 360template <class ...ExtraArgs> 361void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { 362 [...] 363} 364// Registers a benchmark named "BM_takes_args/int_string_test" that passes 365// the specified values to `extra_args`. 366BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); 367``` 368Note that elements of `...args` may refer to global variables. Users should 369avoid modifying global state inside of a benchmark. 370 371## Using RegisterBenchmark(name, fn, args...) 372 373The `RegisterBenchmark(name, func, args...)` function provides an alternative 374way to create and register benchmarks. 375`RegisterBenchmark(name, func, args...)` creates, registers, and returns a 376pointer to a new benchmark with the specified `name` that invokes 377`func(st, args...)` where `st` is a `benchmark::State` object. 378 379Unlike the `BENCHMARK` registration macros, which can only be used at the global 380scope, the `RegisterBenchmark` can be called anywhere. This allows for 381benchmark tests to be registered programmatically. 382 383Additionally `RegisterBenchmark` allows any callable object to be registered 384as a benchmark. Including capturing lambdas and function objects. 385 386For Example: 387```c++ 388auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; 389 390int main(int argc, char** argv) { 391 for (auto& test_input : { /* ... */ }) 392 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); 393 benchmark::Initialize(&argc, argv); 394 benchmark::RunSpecifiedBenchmarks(); 395} 396``` 397 398### Multithreaded benchmarks 399In a multithreaded test (benchmark invoked by multiple threads simultaneously), 400it is guaranteed that none of the threads will start until all have reached 401the start of the benchmark loop, and all will have finished before any thread 402exits the benchmark loop. (This behavior is also provided by the `KeepRunning()` 403API) As such, any global setup or teardown can be wrapped in a check against the thread 404index: 405 406```c++ 407static void BM_MultiThreaded(benchmark::State& state) { 408 if (state.thread_index == 0) { 409 // Setup code here. 410 } 411 for (auto _ : state) { 412 // Run the test as normal. 413 } 414 if (state.thread_index == 0) { 415 // Teardown code here. 416 } 417} 418BENCHMARK(BM_MultiThreaded)->Threads(2); 419``` 420 421If the benchmarked code itself uses threads and you want to compare it to 422single-threaded code, you may want to use real-time ("wallclock") measurements 423for latency comparisons: 424 425```c++ 426BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); 427``` 428 429Without `UseRealTime`, CPU time is used by default. 430 431## Controlling timers 432Normally, the entire duration of the work loop (`for (auto _ : state) {}`) 433is measured. But sometimes, it is nessesary to do some work inside of 434that loop, every iteration, but without counting that time to the benchmark time. 435That is possible, althought it is not recommended, since it has high overhead. 436 437```c++ 438static void BM_SetInsert_With_Timer_Control(benchmark::State& state) { 439 std::set<int> data; 440 for (auto _ : state) { 441 state.PauseTiming(); // Stop timers. They will not count until they are resumed. 442 data = ConstructRandomSet(state.range(0)); // Do something that should not be measured 443 state.ResumeTiming(); // And resume timers. They are now counting again. 444 // The rest will be measured. 445 for (int j = 0; j < state.range(1); ++j) 446 data.insert(RandomNumber()); 447 } 448} 449BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}}); 450``` 451 452## Manual timing 453For benchmarking something for which neither CPU time nor real-time are 454correct or accurate enough, completely manual timing is supported using 455the `UseManualTime` function. 456 457When `UseManualTime` is used, the benchmarked code must call 458`SetIterationTime` once per iteration of the benchmark loop to 459report the manually measured time. 460 461An example use case for this is benchmarking GPU execution (e.g. OpenCL 462or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot 463be accurately measured using CPU time or real-time. Instead, they can be 464measured accurately using a dedicated API, and these measurement results 465can be reported back with `SetIterationTime`. 466 467```c++ 468static void BM_ManualTiming(benchmark::State& state) { 469 int microseconds = state.range(0); 470 std::chrono::duration<double, std::micro> sleep_duration { 471 static_cast<double>(microseconds) 472 }; 473 474 for (auto _ : state) { 475 auto start = std::chrono::high_resolution_clock::now(); 476 // Simulate some useful workload with a sleep 477 std::this_thread::sleep_for(sleep_duration); 478 auto end = std::chrono::high_resolution_clock::now(); 479 480 auto elapsed_seconds = 481 std::chrono::duration_cast<std::chrono::duration<double>>( 482 end - start); 483 484 state.SetIterationTime(elapsed_seconds.count()); 485 } 486} 487BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); 488``` 489 490### Preventing optimisation 491To prevent a value or expression from being optimized away by the compiler 492the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` 493functions can be used. 494 495```c++ 496static void BM_test(benchmark::State& state) { 497 for (auto _ : state) { 498 int x = 0; 499 for (int i=0; i < 64; ++i) { 500 benchmark::DoNotOptimize(x += i); 501 } 502 } 503} 504``` 505 506`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either 507memory or a register. For GNU based compilers it acts as read/write barrier 508for global memory. More specifically it forces the compiler to flush pending 509writes to memory and reload any other values as necessary. 510 511Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` 512in any way. `<expr>` may even be removed entirely when the result is already 513known. For example: 514 515```c++ 516 /* Example 1: `<expr>` is removed entirely. */ 517 int foo(int x) { return x + 42; } 518 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); 519 520 /* Example 2: Result of '<expr>' is only reused */ 521 int bar(int) __attribute__((const)); 522 while (...) DoNotOptimize(bar(0)); // Optimized to: 523 // int __result__ = bar(0); 524 // while (...) DoNotOptimize(__result__); 525``` 526 527The second tool for preventing optimizations is `ClobberMemory()`. In essence 528`ClobberMemory()` forces the compiler to perform all pending writes to global 529memory. Memory managed by block scope objects must be "escaped" using 530`DoNotOptimize(...)` before it can be clobbered. In the below example 531`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized 532away. 533 534```c++ 535static void BM_vector_push_back(benchmark::State& state) { 536 for (auto _ : state) { 537 std::vector<int> v; 538 v.reserve(1); 539 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. 540 v.push_back(42); 541 benchmark::ClobberMemory(); // Force 42 to be written to memory. 542 } 543} 544``` 545 546Note that `ClobberMemory()` is only available for GNU or MSVC based compilers. 547 548### Set time unit manually 549If a benchmark runs a few milliseconds it may be hard to visually compare the 550measured times, since the output data is given in nanoseconds per default. In 551order to manually set the time unit, you can specify it manually: 552 553```c++ 554BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); 555``` 556 557### Reporting the mean, median and standard deviation by repeated benchmarks 558By default each benchmark is run once and that single result is reported. 559However benchmarks are often noisy and a single result may not be representative 560of the overall behavior. For this reason it's possible to repeatedly rerun the 561benchmark. 562 563The number of runs of each benchmark is specified globally by the 564`--benchmark_repetitions` flag or on a per benchmark basis by calling 565`Repetitions` on the registered benchmark object. When a benchmark is run more 566than once the mean, median and standard deviation of the runs will be reported. 567 568Additionally the `--benchmark_report_aggregates_only={true|false}`, 569`--benchmark_display_aggregates_only={true|false}` flags or 570`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be 571used to change how repeated tests are reported. By default the result of each 572repeated run is reported. When `report aggregates only` option is `true`, 573only the aggregates (i.e. mean, median and standard deviation, maybe complexity 574measurements if they were requested) of the runs is reported, to both the 575reporters - standard output (console), and the file. 576However when only the `display aggregates only` option is `true`, 577only the aggregates are displayed in the standard output, while the file 578output still contains everything. 579Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a 580registered benchmark object overrides the value of the appropriate flag for that 581benchmark. 582 583## User-defined statistics for repeated benchmarks 584While having mean, median and standard deviation is nice, this may not be 585enough for everyone. For example you may want to know what is the largest 586observation, e.g. because you have some real-time constraints. This is easy. 587The following code will specify a custom statistic to be calculated, defined 588by a lambda function. 589 590```c++ 591void BM_spin_empty(benchmark::State& state) { 592 for (auto _ : state) { 593 for (int x = 0; x < state.range(0); ++x) { 594 benchmark::DoNotOptimize(x); 595 } 596 } 597} 598 599BENCHMARK(BM_spin_empty) 600 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double { 601 return *(std::max_element(std::begin(v), std::end(v))); 602 }) 603 ->Arg(512); 604``` 605 606## Fixtures 607Fixture tests are created by 608first defining a type that derives from `::benchmark::Fixture` and then 609creating/registering the tests using the following macros: 610 611* `BENCHMARK_F(ClassName, Method)` 612* `BENCHMARK_DEFINE_F(ClassName, Method)` 613* `BENCHMARK_REGISTER_F(ClassName, Method)` 614 615For Example: 616 617```c++ 618class MyFixture : public benchmark::Fixture { 619public: 620 void SetUp(const ::benchmark::State& state) { 621 } 622 623 void TearDown(const ::benchmark::State& state) { 624 } 625}; 626 627BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { 628 for (auto _ : st) { 629 ... 630 } 631} 632 633BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { 634 for (auto _ : st) { 635 ... 636 } 637} 638/* BarTest is NOT registered */ 639BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); 640/* BarTest is now registered */ 641``` 642 643### Templated fixtures 644Also you can create templated fixture by using the following macros: 645 646* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)` 647* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)` 648 649For example: 650```c++ 651template<typename T> 652class MyFixture : public benchmark::Fixture {}; 653 654BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) { 655 for (auto _ : st) { 656 ... 657 } 658} 659 660BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) { 661 for (auto _ : st) { 662 ... 663 } 664} 665 666BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2); 667``` 668 669## User-defined counters 670 671You can add your own counters with user-defined names. The example below 672will add columns "Foo", "Bar" and "Baz" in its output: 673 674```c++ 675static void UserCountersExample1(benchmark::State& state) { 676 double numFoos = 0, numBars = 0, numBazs = 0; 677 for (auto _ : state) { 678 // ... count Foo,Bar,Baz events 679 } 680 state.counters["Foo"] = numFoos; 681 state.counters["Bar"] = numBars; 682 state.counters["Baz"] = numBazs; 683} 684``` 685 686The `state.counters` object is a `std::map` with `std::string` keys 687and `Counter` values. The latter is a `double`-like class, via an implicit 688conversion to `double&`. Thus you can use all of the standard arithmetic 689assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter. 690 691In multithreaded benchmarks, each counter is set on the calling thread only. 692When the benchmark finishes, the counters from each thread will be summed; 693the resulting sum is the value which will be shown for the benchmark. 694 695The `Counter` constructor accepts three parameters: the value as a `double` 696; a bit flag which allows you to show counters as rates, and/or as per-thread 697iteration, and/or as per-thread averages, and/or iteration invariants; 698and a flag specifying the 'unit' - i.e. is 1k a 1000 (default, 699`benchmark::Counter::OneK::kIs1000`), or 1024 700(`benchmark::Counter::OneK::kIs1024`)? 701 702```c++ 703 // sets a simple counter 704 state.counters["Foo"] = numFoos; 705 706 // Set the counter as a rate. It will be presented divided 707 // by the duration of the benchmark. 708 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate); 709 710 // Set the counter as a thread-average quantity. It will 711 // be presented divided by the number of threads. 712 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads); 713 714 // There's also a combined flag: 715 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate); 716 717 // This says that we process with the rate of state.range(0) bytes every iteration: 718 state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024); 719``` 720 721When you're compiling in C++11 mode or later you can use `insert()` with 722`std::initializer_list`: 723 724```c++ 725 // With C++11, this can be done: 726 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}}); 727 // ... instead of: 728 state.counters["Foo"] = numFoos; 729 state.counters["Bar"] = numBars; 730 state.counters["Baz"] = numBazs; 731``` 732 733### Counter reporting 734 735When using the console reporter, by default, user counters are are printed at 736the end after the table, the same way as ``bytes_processed`` and 737``items_processed``. This is best for cases in which there are few counters, 738or where there are only a couple of lines per benchmark. Here's an example of 739the default output: 740 741``` 742------------------------------------------------------------------------------ 743Benchmark Time CPU Iterations UserCounters... 744------------------------------------------------------------------------------ 745BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8 746BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m 747BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2 748BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4 749BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8 750BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16 751BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32 752BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4 753BM_Factorial 26 ns 26 ns 26608979 40320 754BM_Factorial/real_time 26 ns 26 ns 26587936 40320 755BM_CalculatePiRange/1 16 ns 16 ns 45704255 0 756BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374 757BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746 758BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355 759``` 760 761If this doesn't suit you, you can print each counter as a table column by 762passing the flag `--benchmark_counters_tabular=true` to the benchmark 763application. This is best for cases in which there are a lot of counters, or 764a lot of lines per individual benchmark. Note that this will trigger a 765reprinting of the table header any time the counter set changes between 766individual benchmarks. Here's an example of corresponding output when 767`--benchmark_counters_tabular=true` is passed: 768 769``` 770--------------------------------------------------------------------------------------- 771Benchmark Time CPU Iterations Bar Bat Baz Foo 772--------------------------------------------------------------------------------------- 773BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8 774BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1 775BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2 776BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4 777BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8 778BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16 779BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32 780BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4 781-------------------------------------------------------------- 782Benchmark Time CPU Iterations 783-------------------------------------------------------------- 784BM_Factorial 26 ns 26 ns 26392245 40320 785BM_Factorial/real_time 26 ns 26 ns 26494107 40320 786BM_CalculatePiRange/1 15 ns 15 ns 45571597 0 787BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374 788BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746 789BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355 790BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184 791BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162 792BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416 793BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159 794BM_CalculatePi/threads:8 2255 ns 9943 ns 70936 795``` 796Note above the additional header printed when the benchmark changes from 797``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does 798not have the same counter set as ``BM_UserCounter``. 799 800## Exiting Benchmarks in Error 801 802When errors caused by external influences, such as file I/O and network 803communication, occur within a benchmark the 804`State::SkipWithError(const char* msg)` function can be used to skip that run 805of benchmark and report the error. Note that only future iterations of the 806`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop 807Users must explicitly exit the loop, otherwise all iterations will be performed. 808Users may explicitly return to exit the benchmark immediately. 809 810The `SkipWithError(...)` function may be used at any point within the benchmark, 811including before and after the benchmark loop. 812 813For example: 814 815```c++ 816static void BM_test(benchmark::State& state) { 817 auto resource = GetResource(); 818 if (!resource.good()) { 819 state.SkipWithError("Resource is not good!"); 820 // KeepRunning() loop will not be entered. 821 } 822 for (state.KeepRunning()) { 823 auto data = resource.read_data(); 824 if (!resource.good()) { 825 state.SkipWithError("Failed to read data!"); 826 break; // Needed to skip the rest of the iteration. 827 } 828 do_stuff(data); 829 } 830} 831 832static void BM_test_ranged_fo(benchmark::State & state) { 833 state.SkipWithError("test will not be entered"); 834 for (auto _ : state) { 835 state.SkipWithError("Failed!"); 836 break; // REQUIRED to prevent all further iterations. 837 } 838} 839``` 840 841## Running a subset of the benchmarks 842 843The `--benchmark_filter=<regex>` option can be used to only run the benchmarks 844which match the specified `<regex>`. For example: 845 846```bash 847$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 848Run on (1 X 2300 MHz CPU ) 8492016-06-25 19:34:24 850Benchmark Time CPU Iterations 851---------------------------------------------------- 852BM_memcpy/32 11 ns 11 ns 79545455 853BM_memcpy/32k 2181 ns 2185 ns 324074 854BM_memcpy/32 12 ns 12 ns 54687500 855BM_memcpy/32k 1834 ns 1837 ns 357143 856``` 857 858## Runtime and reporting considerations 859When the benchmark binary is executed, each benchmark function is run serially. 860The number of iterations to run is determined dynamically by running the 861benchmark a few times and measuring the time taken and ensuring that the 862ultimate result will be statistically stable. As such, faster benchmark 863functions will be run for more iterations than slower benchmark functions, and 864the number of iterations is thus reported. 865 866In all cases, the number of iterations for which the benchmark is run is 867governed by the amount of time the benchmark takes. Concretely, the number of 868iterations is at least one, not more than 1e9, until CPU time is greater than 869the minimum time, or the wallclock time is 5x minimum time. The minimum time is 870set per benchmark by calling `MinTime` on the registered benchmark object. 871 872Average timings are then reported over the iterations run. If multiple 873repetitions are requested using the `--benchmark_repetitions` command-line 874option, or at registration time, the benchmark function will be run several 875times and statistical results across these repetitions will also be reported. 876 877As well as the per-benchmark entries, a preamble in the report will include 878information about the machine on which the benchmarks are run. 879 880### Output Formats 881The library supports multiple output formats. Use the 882`--benchmark_format=<console|json|csv>` flag to set the format type. `console` 883is the default format. 884 885The Console format is intended to be a human readable format. By default 886the format generates color output. Context is output on stderr and the 887tabular data on stdout. Example tabular output looks like: 888``` 889Benchmark Time(ns) CPU(ns) Iterations 890---------------------------------------------------------------------- 891BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s 892BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s 893BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s 894``` 895 896The JSON format outputs human readable json split into two top level attributes. 897The `context` attribute contains information about the run in general, including 898information about the CPU and the date. 899The `benchmarks` attribute contains a list of every benchmark run. Example json 900output looks like: 901```json 902{ 903 "context": { 904 "date": "2015/03/17-18:40:25", 905 "num_cpus": 40, 906 "mhz_per_cpu": 2801, 907 "cpu_scaling_enabled": false, 908 "build_type": "debug" 909 }, 910 "benchmarks": [ 911 { 912 "name": "BM_SetInsert/1024/1", 913 "iterations": 94877, 914 "real_time": 29275, 915 "cpu_time": 29836, 916 "bytes_per_second": 134066, 917 "items_per_second": 33516 918 }, 919 { 920 "name": "BM_SetInsert/1024/8", 921 "iterations": 21609, 922 "real_time": 32317, 923 "cpu_time": 32429, 924 "bytes_per_second": 986770, 925 "items_per_second": 246693 926 }, 927 { 928 "name": "BM_SetInsert/1024/10", 929 "iterations": 21393, 930 "real_time": 32724, 931 "cpu_time": 33355, 932 "bytes_per_second": 1199226, 933 "items_per_second": 299807 934 } 935 ] 936} 937``` 938 939The CSV format outputs comma-separated values. The `context` is output on stderr 940and the CSV itself on stdout. Example CSV output looks like: 941``` 942name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label 943"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, 944"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, 945"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, 946``` 947 948### Output Files 949The library supports writing the output of the benchmark to a file specified 950by `--benchmark_out=<filename>`. The format of the output can be specified 951using `--benchmark_out_format={json|console|csv}`. Specifying 952`--benchmark_out` does not suppress the console output. 953 954## Result comparison 955 956It is possible to compare the benchmarking results. See [Additional Tooling Documentation](docs/tools.md) 957 958## Debug vs Release 959By default, benchmark builds as a debug library. You will see a warning in the 960output when this is the case. To build it as a release library instead, use: 961 962``` 963cmake -DCMAKE_BUILD_TYPE=Release 964``` 965 966To enable link-time optimisation, use 967 968``` 969cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true 970``` 971 972If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake 973cache variables, if autodetection fails. 974 975If you are using clang, you may need to set `LLVMAR_EXECUTABLE`, 976`LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables. 977 978## Compiler Support 979 980Google Benchmark uses C++11 when building the library. As such we require 981a modern C++ toolchain, both compiler and standard library. 982 983The following minimum versions are strongly recommended build the library: 984 985* GCC 4.8 986* Clang 3.4 987* Visual Studio 2013 988* Intel 2015 Update 1 989 990Anything older *may* work. 991 992Note: Using the library and its headers in C++03 is supported. C++11 is only 993required to build the library. 994 995## Disable CPU frequency scaling 996If you see this error: 997``` 998***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead. 999``` 1000you might want to disable the CPU frequency scaling while running the benchmark: 1001```bash 1002sudo cpupower frequency-set --governor performance 1003./mybench 1004sudo cpupower frequency-set --governor powersave 1005``` 1006