1====================== 2Nanopb: Basic concepts 3====================== 4 5.. include :: menu.rst 6 7The things outlined here are the underlying concepts of the nanopb design. 8 9.. contents:: 10 11Proto files 12=========== 13All Protocol Buffers implementations use .proto files to describe the message 14format. The point of these files is to be a portable interface description 15language. 16 17Compiling .proto files for nanopb 18--------------------------------- 19Nanopb uses the Google's protoc compiler to parse the .proto file, and then a 20python script to generate the C header and source code from it:: 21 22 user@host:~$ protoc -omessage.pb message.proto 23 user@host:~$ python ../generator/nanopb_generator.py message.pb 24 Writing to message.h and message.c 25 user@host:~$ 26 27Modifying generator behaviour 28----------------------------- 29Using generator options, you can set maximum sizes for fields in order to 30allocate them statically. The preferred way to do this is to create an .options 31file with the same name as your .proto file:: 32 33 # Foo.proto 34 message Foo { 35 required string name = 1; 36 } 37 38:: 39 40 # Foo.options 41 Foo.name max_size:16 42 43For more information on this, see the `Proto file options`_ section in the 44reference manual. 45 46.. _`Proto file options`: reference.html#proto-file-options 47 48Streams 49======= 50 51Nanopb uses streams for accessing the data in encoded format. 52The stream abstraction is very lightweight, and consists of a structure (*pb_ostream_t* or *pb_istream_t*) which contains a pointer to a callback function. 53 54There are a few generic rules for callback functions: 55 56#) Return false on IO errors. The encoding or decoding process will abort immediately. 57#) Use state to store your own data, such as a file descriptor. 58#) *bytes_written* and *bytes_left* are updated by pb_write and pb_read. 59#) Your callback may be used with substreams. In this case *bytes_left*, *bytes_written* and *max_size* have smaller values than the original stream. Don't use these values to calculate pointers. 60#) Always read or write the full requested length of data. For example, POSIX *recv()* needs the *MSG_WAITALL* parameter to accomplish this. 61 62Output streams 63-------------- 64 65:: 66 67 struct _pb_ostream_t 68 { 69 bool (*callback)(pb_ostream_t *stream, const uint8_t *buf, size_t count); 70 void *state; 71 size_t max_size; 72 size_t bytes_written; 73 }; 74 75The *callback* for output stream may be NULL, in which case the stream simply counts the number of bytes written. In this case, *max_size* is ignored. 76 77Otherwise, if *bytes_written* + bytes_to_be_written is larger than *max_size*, pb_write returns false before doing anything else. If you don't want to limit the size of the stream, pass SIZE_MAX. 78 79**Example 1:** 80 81This is the way to get the size of the message without storing it anywhere:: 82 83 Person myperson = ...; 84 pb_ostream_t sizestream = {0}; 85 pb_encode(&sizestream, Person_fields, &myperson); 86 printf("Encoded size is %d\n", sizestream.bytes_written); 87 88**Example 2:** 89 90Writing to stdout:: 91 92 bool callback(pb_ostream_t *stream, const uint8_t *buf, size_t count) 93 { 94 FILE *file = (FILE*) stream->state; 95 return fwrite(buf, 1, count, file) == count; 96 } 97 98 pb_ostream_t stdoutstream = {&callback, stdout, SIZE_MAX, 0}; 99 100Input streams 101------------- 102For input streams, there is one extra rule: 103 104#) You don't need to know the length of the message in advance. After getting EOF error when reading, set bytes_left to 0 and return false. Pb_decode will detect this and if the EOF was in a proper position, it will return true. 105 106Here is the structure:: 107 108 struct _pb_istream_t 109 { 110 bool (*callback)(pb_istream_t *stream, uint8_t *buf, size_t count); 111 void *state; 112 size_t bytes_left; 113 }; 114 115The *callback* must always be a function pointer. *Bytes_left* is an upper limit on the number of bytes that will be read. You can use SIZE_MAX if your callback handles EOF as described above. 116 117**Example:** 118 119This function binds an input stream to stdin: 120 121:: 122 123 bool callback(pb_istream_t *stream, uint8_t *buf, size_t count) 124 { 125 FILE *file = (FILE*)stream->state; 126 bool status; 127 128 if (buf == NULL) 129 { 130 while (count-- && fgetc(file) != EOF); 131 return count == 0; 132 } 133 134 status = (fread(buf, 1, count, file) == count); 135 136 if (feof(file)) 137 stream->bytes_left = 0; 138 139 return status; 140 } 141 142 pb_istream_t stdinstream = {&callback, stdin, SIZE_MAX}; 143 144Data types 145========== 146 147Most Protocol Buffers datatypes have directly corresponding C datatypes, such as int32 is int32_t, float is float and bool is bool. However, the variable-length datatypes are more complex: 148 1491) Strings, bytes and repeated fields of any type map to callback functions by default. 1502) If there is a special option *(nanopb).max_size* specified in the .proto file, string maps to null-terminated char array and bytes map to a structure containing a char array and a size field. 1513) If *(nanopb).type* is set to *FT_INLINE* and *(nanopb).max_size* is also set, then bytes map to an inline byte array of fixed size. 1523) If there is a special option *(nanopb).max_count* specified on a repeated field, it maps to an array of whatever type is being repeated. Another field will be created for the actual number of entries stored. 153 154=============================================================================== ======================= 155 field in .proto autogenerated in .h 156=============================================================================== ======================= 157required string name = 1; pb_callback_t name; 158required string name = 1 [(nanopb).max_size = 40]; char name[40]; 159repeated string name = 1 [(nanopb).max_size = 40]; pb_callback_t name; 160repeated string name = 1 [(nanopb).max_size = 40, (nanopb).max_count = 5]; | size_t name_count; 161 | char name[5][40]; 162required bytes data = 1 [(nanopb).max_size = 40]; | typedef struct { 163 | size_t size; 164 | pb_byte_t bytes[40]; 165 | } Person_data_t; 166 | Person_data_t data; 167required bytes data = 1 [(nanopb).max_size = 40, (nanopb.type) = FT_INLINE]; | pb_byte_t data[40]; 168=============================================================================== ======================= 169 170The maximum lengths are checked in runtime. If string/bytes/array exceeds the allocated length, *pb_decode* will return false. 171 172Note: for the *bytes* datatype, the field length checking may not be exact. 173The compiler may add some padding to the *pb_bytes_t* structure, and the nanopb runtime doesn't know how much of the structure size is padding. Therefore it uses the whole length of the structure for storing data, which is not very smart but shouldn't cause problems. In practise, this means that if you specify *(nanopb).max_size=5* on a *bytes* field, you may be able to store 6 bytes there. For the *string* field type, the length limit is exact. 174 175Field callbacks 176=============== 177When a field has dynamic length, nanopb cannot statically allocate storage for it. Instead, it allows you to handle the field in whatever way you want, using a callback function. 178 179The `pb_callback_t`_ structure contains a function pointer and a *void* pointer called *arg* you can use for passing data to the callback. If the function pointer is NULL, the field will be skipped. A pointer to the *arg* is passed to the function, so that it can modify it and retrieve the value. 180 181The actual behavior of the callback function is different in encoding and decoding modes. In encoding mode, the callback is called once and should write out everything, including field tags. In decoding mode, the callback is called repeatedly for every data item. 182 183.. _`pb_callback_t`: reference.html#pb-callback-t 184 185Encoding callbacks 186------------------ 187:: 188 189 bool (*encode)(pb_ostream_t *stream, const pb_field_t *field, void * const *arg); 190 191When encoding, the callback should write out complete fields, including the wire type and field number tag. It can write as many or as few fields as it likes. For example, if you want to write out an array as *repeated* field, you should do it all in a single call. 192 193Usually you can use `pb_encode_tag_for_field`_ to encode the wire type and tag number of the field. However, if you want to encode a repeated field as a packed array, you must call `pb_encode_tag`_ instead to specify a wire type of *PB_WT_STRING*. 194 195If the callback is used in a submessage, it will be called multiple times during a single call to `pb_encode`_. In this case, it must produce the same amount of data every time. If the callback is directly in the main message, it is called only once. 196 197.. _`pb_encode`: reference.html#pb-encode 198.. _`pb_encode_tag_for_field`: reference.html#pb-encode-tag-for-field 199.. _`pb_encode_tag`: reference.html#pb-encode-tag 200 201This callback writes out a dynamically sized string:: 202 203 bool write_string(pb_ostream_t *stream, const pb_field_t *field, void * const *arg) 204 { 205 char *str = get_string_from_somewhere(); 206 if (!pb_encode_tag_for_field(stream, field)) 207 return false; 208 209 return pb_encode_string(stream, (uint8_t*)str, strlen(str)); 210 } 211 212Decoding callbacks 213------------------ 214:: 215 216 bool (*decode)(pb_istream_t *stream, const pb_field_t *field, void **arg); 217 218When decoding, the callback receives a length-limited substring that reads the contents of a single field. The field tag has already been read. For *string* and *bytes*, the length value has already been parsed, and is available at *stream->bytes_left*. 219 220The callback will be called multiple times for repeated fields. For packed fields, you can either read multiple values until the stream ends, or leave it to `pb_decode`_ to call your function over and over until all values have been read. 221 222.. _`pb_decode`: reference.html#pb-decode 223 224This callback reads multiple integers and prints them:: 225 226 bool read_ints(pb_istream_t *stream, const pb_field_t *field, void **arg) 227 { 228 while (stream->bytes_left) 229 { 230 uint64_t value; 231 if (!pb_decode_varint(stream, &value)) 232 return false; 233 printf("%lld\n", value); 234 } 235 return true; 236 } 237 238Field description array 239======================= 240 241For using the *pb_encode* and *pb_decode* functions, you need an array of pb_field_t constants describing the structure you wish to encode. This description is usually autogenerated from .proto file. 242 243For example this submessage in the Person.proto file:: 244 245 message Person { 246 message PhoneNumber { 247 required string number = 1 [(nanopb).max_size = 40]; 248 optional PhoneType type = 2 [default = HOME]; 249 } 250 } 251 252generates this field description array for the structure *Person_PhoneNumber*:: 253 254 const pb_field_t Person_PhoneNumber_fields[3] = { 255 PB_FIELD( 1, STRING , REQUIRED, STATIC, Person_PhoneNumber, number, number, 0), 256 PB_FIELD( 2, ENUM , OPTIONAL, STATIC, Person_PhoneNumber, type, number, &Person_PhoneNumber_type_default), 257 PB_LAST_FIELD 258 }; 259 260Oneof 261===== 262Protocol Buffers supports `oneof`_ sections. Here is an example of ``oneof`` usage:: 263 264 message MsgType1 { 265 required int32 value = 1; 266 } 267 268 message MsgType2 { 269 required bool value = 1; 270 } 271 272 message MsgType3 { 273 required int32 value1 = 1; 274 required int32 value2 = 2; 275 } 276 277 message MyMessage { 278 required uint32 uid = 1; 279 required uint32 pid = 2; 280 required uint32 utime = 3; 281 282 oneof payload { 283 MsgType1 msg1 = 4; 284 MsgType2 msg2 = 5; 285 MsgType3 msg3 = 6; 286 } 287 } 288 289Nanopb will generate ``payload`` as a C union and add an additional field ``which_payload``:: 290 291 typedef struct _MyMessage { 292 uint32_t uid; 293 uint32_t pid; 294 uint32_t utime; 295 pb_size_t which_payload; 296 union { 297 MsgType1 msg1; 298 MsgType2 msg2; 299 MsgType3 msg3; 300 } payload; 301 /* @@protoc_insertion_point(struct:MyMessage) */ 302 } MyMessage; 303 304``which_payload`` indicates which of the ``oneof`` fields is actually set. 305The user is expected to set the filed manually using the correct field tag:: 306 307 MyMessage msg = MyMessage_init_zero; 308 msg.payload.msg2.value = true; 309 msg.which_payload = MyMessage_msg2_tag; 310 311Notice that neither ``which_payload`` field nor the unused fileds in ``payload`` 312will consume any space in the resulting encoded message. 313 314.. _`oneof`: https://developers.google.com/protocol-buffers/docs/reference/proto2-spec#oneof_and_oneof_field 315 316Extension fields 317================ 318Protocol Buffers supports a concept of `extension fields`_, which are 319additional fields to a message, but defined outside the actual message. 320The definition can even be in a completely separate .proto file. 321 322The base message is declared as extensible by keyword *extensions* in 323the .proto file:: 324 325 message MyMessage { 326 .. fields .. 327 extensions 100 to 199; 328 } 329 330For each extensible message, *nanopb_generator.py* declares an additional 331callback field called *extensions*. The field and associated datatype 332*pb_extension_t* forms a linked list of handlers. When an unknown field is 333encountered, the decoder calls each handler in turn until either one of them 334handles the field, or the list is exhausted. 335 336The actual extensions are declared using the *extend* keyword in the .proto, 337and are in the global namespace:: 338 339 extend MyMessage { 340 optional int32 myextension = 100; 341 } 342 343For each extension, *nanopb_generator.py* creates a constant of type 344*pb_extension_type_t*. To link together the base message and the extension, 345you have to: 346 3471. Allocate storage for your field, matching the datatype in the .proto. 348 For example, for a *int32* field, you need a *int32_t* variable to store 349 the value. 3502. Create a *pb_extension_t* constant, with pointers to your variable and 351 to the generated *pb_extension_type_t*. 3523. Set the *message.extensions* pointer to point to the *pb_extension_t*. 353 354An example of this is available in *tests/test_encode_extensions.c* and 355*tests/test_decode_extensions.c*. 356 357.. _`extension fields`: https://developers.google.com/protocol-buffers/docs/proto#extensions 358 359Message framing 360=============== 361Protocol Buffers does not specify a method of framing the messages for transmission. 362This is something that must be provided by the library user, as there is no one-size-fits-all 363solution. Typical needs for a framing format are to: 364 3651. Encode the message length. 3662. Encode the message type. 3673. Perform any synchronization and error checking that may be needed depending on application. 368 369For example UDP packets already fullfill all the requirements, and TCP streams typically only 370need a way to identify the message length and type. Lower level interfaces such as serial ports 371may need a more robust frame format, such as HDLC (high-level data link control). 372 373Nanopb provides a few helpers to facilitate implementing framing formats: 374 3751. Functions *pb_encode_delimited* and *pb_decode_delimited* prefix the message data with a varint-encoded length. 3762. Union messages and oneofs are supported in order to implement top-level container messages. 3773. Message IDs can be specified using the *(nanopb_msgopt).msgid* option and can then be accessed from the header. 378 379Return values and error handling 380================================ 381 382Most functions in nanopb return bool: *true* means success, *false* means failure. There is also some support for error messages for debugging purposes: the error messages go in *stream->errmsg*. 383 384The error messages help in guessing what is the underlying cause of the error. The most common error conditions are: 385 3861) Running out of memory, i.e. stack overflow. 3872) Invalid field descriptors (would usually mean a bug in the generator). 3883) IO errors in your own stream callbacks. 3894) Errors that happen in your callback functions. 3905) Exceeding the max_size or bytes_left of a stream. 3916) Exceeding the max_size of a string or array field 3927) Invalid protocol buffers binary message. 393