1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2003-2014, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: gencnvex.c
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2003oct12
16 * created by: Markus W. Scherer
17 */
18
19 #include <stdio.h>
20 #include "unicode/utypes.h"
21 #include "unicode/ustring.h"
22 #include "cstring.h"
23 #include "cmemory.h"
24 #include "ucnv_cnv.h"
25 #include "ucnvmbcs.h"
26 #include "toolutil.h"
27 #include "unewdata.h"
28 #include "ucm.h"
29 #include "makeconv.h"
30 #include "genmbcs.h"
31
32 static void
33 CnvExtClose(NewConverter *cnvData);
34
35 static UBool
36 CnvExtIsValid(NewConverter *cnvData,
37 const uint8_t *bytes, int32_t length);
38
39 static UBool
40 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
41
42 static uint32_t
43 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
44 UNewDataMemory *pData, int32_t tableType);
45
46 typedef struct CnvExtData {
47 NewConverter newConverter;
48
49 UCMFile *ucm;
50
51 /* toUnicode (state table in ucm->states) */
52 UToolMemory *toUTable, *toUUChars;
53
54 /* fromUnicode */
55 UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
56
57 uint16_t stage1[MBCS_STAGE_1_SIZE];
58 uint16_t stage2[MBCS_STAGE_2_SIZE];
59 uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
60 uint32_t stage3b[0x10000];
61
62 int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
63
64 /* for stage3 compaction of <subchar1> |2 mappings */
65 uint16_t stage3Sub1Block;
66
67 /* statistics */
68 int32_t
69 maxInBytes, maxOutBytes, maxBytesPerUChar,
70 maxInUChars, maxOutUChars, maxUCharsPerByte;
71 } CnvExtData;
72
73 NewConverter *
CnvExtOpen(UCMFile * ucm)74 CnvExtOpen(UCMFile *ucm) {
75 CnvExtData *extData;
76
77 extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
78 if(extData==NULL) {
79 printf("out of memory\n");
80 exit(U_MEMORY_ALLOCATION_ERROR);
81 }
82 uprv_memset(extData, 0, sizeof(CnvExtData));
83
84 extData->ucm=ucm; /* aliased, not owned */
85
86 extData->newConverter.close=CnvExtClose;
87 extData->newConverter.isValid=CnvExtIsValid;
88 extData->newConverter.addTable=CnvExtAddTable;
89 extData->newConverter.write=CnvExtWrite;
90 return &extData->newConverter;
91 }
92
93 static void
CnvExtClose(NewConverter * cnvData)94 CnvExtClose(NewConverter *cnvData) {
95 CnvExtData *extData=(CnvExtData *)cnvData;
96 if(extData!=NULL) {
97 utm_close(extData->toUTable);
98 utm_close(extData->toUUChars);
99 utm_close(extData->fromUTableUChars);
100 utm_close(extData->fromUTableValues);
101 utm_close(extData->fromUBytes);
102 uprv_free(extData);
103 }
104 }
105
106 /* we do not expect this to be called */
107 static UBool
CnvExtIsValid(NewConverter * cnvData,const uint8_t * bytes,int32_t length)108 CnvExtIsValid(NewConverter *cnvData,
109 const uint8_t *bytes, int32_t length) {
110 return FALSE;
111 }
112
113 static uint32_t
CnvExtWrite(NewConverter * cnvData,const UConverterStaticData * staticData,UNewDataMemory * pData,int32_t tableType)114 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
115 UNewDataMemory *pData, int32_t tableType) {
116 CnvExtData *extData=(CnvExtData *)cnvData;
117 int32_t length, top, headerSize;
118
119 int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
120
121 if(tableType&TABLE_BASE) {
122 headerSize=0;
123 } else {
124 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
125
126 /* write the header and base table name for an extension-only table */
127 length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
128 while(length&3) {
129 /* add padding */
130 extData->ucm->baseName[length++]=0;
131 }
132
133 headerSize=MBCS_HEADER_V4_LENGTH*4+length;
134
135 /* fill the header */
136 header.version[0]=4;
137 header.version[1]=2;
138 header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
139
140 /* write the header and the base table name */
141 udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
142 udata_writeBlock(pData, extData->ucm->baseName, length);
143 }
144
145 /* fill indexes[] - offsets/indexes are in units of the target array */
146 top=0;
147
148 indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
149 top+=length*4;
150
151 indexes[UCNV_EXT_TO_U_INDEX]=top;
152 indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
153 top+=length*4;
154
155 indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
156 indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
157 top+=length*2;
158
159 indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
160 length=utm_countItems(extData->fromUTableUChars);
161 top+=length*2;
162
163 if(top&3) {
164 /* add padding */
165 *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
166 *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
167 ++length;
168 top+=2;
169 }
170 indexes[UCNV_EXT_FROM_U_LENGTH]=length;
171
172 indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
173 top+=length*4;
174
175 indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
176 length=utm_countItems(extData->fromUBytes);
177 top+=length;
178
179 if(top&1) {
180 /* add padding */
181 *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
182 ++length;
183 ++top;
184 }
185 indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
186
187 indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
188 indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
189 indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
190 top+=length*2;
191
192 indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
193 length=extData->stage3Top;
194 top+=length*2;
195
196 if(top&3) {
197 /* add padding */
198 extData->stage3[extData->stage3Top++]=0;
199 ++length;
200 top+=2;
201 }
202 indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
203
204 indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
205 indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
206 top+=length*4;
207
208 indexes[UCNV_EXT_SIZE]=top;
209
210 /* statistics */
211 indexes[UCNV_EXT_COUNT_BYTES]=
212 (extData->maxInBytes<<16)|
213 (extData->maxOutBytes<<8)|
214 extData->maxBytesPerUChar;
215 indexes[UCNV_EXT_COUNT_UCHARS]=
216 (extData->maxInUChars<<16)|
217 (extData->maxOutUChars<<8)|
218 extData->maxUCharsPerByte;
219
220 indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
221
222 /* write the extension data */
223 udata_writeBlock(pData, indexes, sizeof(indexes));
224 udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
225 udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
226
227 udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
228 udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
229 udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
230
231 udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
232 udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
233 udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
234 udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
235
236 #if 0
237 {
238 int32_t i, j;
239
240 length=extData->stage1Top;
241 printf("\nstage1[%x]:\n", length);
242
243 for(i=0; i<length; ++i) {
244 if(extData->stage1[i]!=length) {
245 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
246 }
247 }
248
249 j=length;
250 length=extData->stage2Top;
251 printf("\nstage2[%x]:\n", length);
252
253 for(i=0; i<length; ++j, ++i) {
254 if(extData->stage2[i]!=0) {
255 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
256 }
257 }
258
259 length=extData->stage3Top;
260 printf("\nstage3[%x]:\n", length);
261
262 for(i=0; i<length; ++i) {
263 if(extData->stage3[i]!=0) {
264 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
265 }
266 }
267
268 length=extData->stage3bTop;
269 printf("\nstage3b[%x]:\n", length);
270
271 for(i=0; i<length; ++i) {
272 if(extData->stage3b[i]!=0) {
273 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
274 }
275 }
276 }
277 #endif
278
279 if(VERBOSE) {
280 printf("size of extension data: %ld\n", (long)top);
281 }
282
283 /* return the number of bytes that should have been written */
284 return (uint32_t)(headerSize+top);
285 }
286
287 /* to Unicode --------------------------------------------------------------- */
288
289 /*
290 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
291 * the toUnicode table.
292 * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
293 * for the base toUnicode table but not for the base fromUnicode table.
294 * The table must be sorted.
295 * Modifies previous data in the reverseMap.
296 */
297 static int32_t
reduceToUMappings(UCMTable * table)298 reduceToUMappings(UCMTable *table) {
299 UCMapping *mappings;
300 int32_t *map;
301 int32_t i, j, count;
302 int8_t flag;
303
304 mappings=table->mappings;
305 map=table->reverseMap;
306 count=table->mappingsLength;
307
308 /* leave the map alone for the initial mappings with desired flags */
309 for(i=j=0; i<count; ++i) {
310 flag=mappings[map[i]].f;
311 if(flag!=0 && flag!=3) {
312 break;
313 }
314 }
315
316 /* reduce from here to the rest */
317 for(j=i; i<count; ++i) {
318 flag=mappings[map[i]].f;
319 if(flag==0 || flag==3) {
320 map[j++]=map[i];
321 }
322 }
323
324 return j;
325 }
326
327 static uint32_t
getToUnicodeValue(CnvExtData * extData,UCMTable * table,UCMapping * m)328 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
329 UChar32 *u32;
330 UChar *u;
331 uint32_t value;
332 int32_t u16Length, ratio;
333 UErrorCode errorCode;
334
335 /* write the Unicode result code point or string index */
336 if(m->uLen==1) {
337 u16Length=U16_LENGTH(m->u);
338 value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
339 } else {
340 /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
341
342 /* get the result code point string and its 16-bit string length */
343 u32=UCM_GET_CODE_POINTS(table, m);
344 errorCode=U_ZERO_ERROR;
345 u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
346 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
347 exit(errorCode);
348 }
349
350 /* allocate it and put its length and index into the value */
351 value=
352 (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
353 ((uint32_t)utm_countItems(extData->toUUChars));
354 u=utm_allocN(extData->toUUChars, u16Length);
355
356 /* write the result 16-bit string */
357 errorCode=U_ZERO_ERROR;
358 u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
359 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
360 exit(errorCode);
361 }
362 }
363 if(m->f==0) {
364 value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
365 }
366
367 /* update statistics */
368 if(m->bLen>extData->maxInBytes) {
369 extData->maxInBytes=m->bLen;
370 }
371 if(u16Length>extData->maxOutUChars) {
372 extData->maxOutUChars=u16Length;
373 }
374
375 ratio=(u16Length+(m->bLen-1))/m->bLen;
376 if(ratio>extData->maxUCharsPerByte) {
377 extData->maxUCharsPerByte=ratio;
378 }
379
380 return value;
381 }
382
383 /*
384 * Recursive toUTable generator core function.
385 * Preconditions:
386 * - start<limit (There is at least one mapping.)
387 * - The mappings are sorted lexically. (Access is through the reverseMap.)
388 * - All mappings between start and limit have input sequences that share
389 * the same prefix of unitIndex length, and therefore all of these sequences
390 * are at least unitIndex+1 long.
391 * - There are only relevant mappings available through the reverseMap,
392 * see reduceToUMappings().
393 *
394 * One function invocation generates one section table.
395 *
396 * Steps:
397 * 1. Count the number of unique unit values and get the low/high unit values
398 * that occur at unitIndex.
399 * 2. Allocate the section table with possible optimization for linear access.
400 * 3. Write temporary version of the section table with start indexes of
401 * subsections, each corresponding to one unit value at unitIndex.
402 * 4. Iterate through the table once more, and depending on the subsection length:
403 * 0: write 0 as a result value (unused byte in linear-access section table)
404 * >0: if there is one mapping with an input unit sequence of unitIndex+1
405 * then defaultValue=compute the mapping result for this whole sequence
406 * else defaultValue=0
407 *
408 * recurse into the subsection
409 */
410 static UBool
generateToUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)411 generateToUTable(CnvExtData *extData, UCMTable *table,
412 int32_t start, int32_t limit, int32_t unitIndex,
413 uint32_t defaultValue) {
414 UCMapping *mappings, *m;
415 int32_t *map;
416 int32_t i, j, uniqueCount, count, subStart, subLimit;
417
418 uint8_t *bytes;
419 int32_t low, high, prev;
420
421 uint32_t *section;
422
423 mappings=table->mappings;
424 map=table->reverseMap;
425
426 /* step 1: examine the input units; set low, high, uniqueCount */
427 m=mappings+map[start];
428 bytes=UCM_GET_BYTES(table, m);
429 low=bytes[unitIndex];
430 uniqueCount=1;
431
432 prev=high=low;
433 for(i=start+1; i<limit; ++i) {
434 m=mappings+map[i];
435 bytes=UCM_GET_BYTES(table, m);
436 high=bytes[unitIndex];
437
438 if(high!=prev) {
439 prev=high;
440 ++uniqueCount;
441 }
442 }
443
444 /* step 2: allocate the section; set count, section */
445 count=(high-low)+1;
446 if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
447 /*
448 * for the root table and for fairly full tables:
449 * allocate for direct, linear array access
450 * by keeping count, to write an entry for each unit value
451 * from low to high
452 * exception: use a compact table if count==0x100 because
453 * that cannot be encoded in the length byte
454 */
455 } else {
456 count=uniqueCount;
457 }
458
459 if(count>=0x100) {
460 fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
461 return FALSE;
462 }
463
464 /* allocate the section: 1 entry for the header + count for the items */
465 section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
466
467 /* write the section header */
468 *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
469
470 /* step 3: write temporary section table with subsection starts */
471 prev=low-1; /* just before low to prevent empty subsections before low */
472 j=0; /* section table index */
473 for(i=start; i<limit; ++i) {
474 m=mappings+map[i];
475 bytes=UCM_GET_BYTES(table, m);
476 high=bytes[unitIndex];
477
478 if(high!=prev) {
479 /* start of a new subsection for unit high */
480 if(count>uniqueCount) {
481 /* write empty subsections for unused units in a linear table */
482 while(++prev<high) {
483 section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
484 }
485 } else {
486 prev=high;
487 }
488
489 /* write the entry with the subsection start */
490 section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
491 }
492 }
493 /* assert(j==count) */
494
495 /* step 4: recurse and write results */
496 subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
497 for(j=0; j<count; ++j) {
498 subStart=subLimit;
499 subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
500
501 /* remove the subStart temporary value */
502 section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
503
504 if(subStart==subLimit) {
505 /* leave the value zero: empty subsection for unused unit in a linear table */
506 continue;
507 }
508
509 /* see if there is exactly one input unit sequence of length unitIndex+1 */
510 defaultValue=0;
511 m=mappings+map[subStart];
512 if(m->bLen==unitIndex+1) {
513 /* do not include this in generateToUTable() */
514 ++subStart;
515
516 if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
517 /* print error for multiple same-input-sequence mappings */
518 fprintf(stderr, "error: multiple mappings from same bytes\n");
519 ucm_printMapping(table, m, stderr);
520 ucm_printMapping(table, mappings+map[subStart], stderr);
521 return FALSE;
522 }
523
524 defaultValue=getToUnicodeValue(extData, table, m);
525 }
526
527 if(subStart==subLimit) {
528 /* write the result for the input sequence ending here */
529 section[j]|=defaultValue;
530 } else {
531 /* write the index to the subsection table */
532 section[j]|=(uint32_t)utm_countItems(extData->toUTable);
533
534 /* recurse */
535 if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
536 return FALSE;
537 }
538 }
539 }
540 return TRUE;
541 }
542
543 /*
544 * Generate the toUTable and toUUChars from the input table.
545 * The input table must be sorted, and all precision flags must be 0..3.
546 * This function will modify the table's reverseMap.
547 */
548 static UBool
makeToUTable(CnvExtData * extData,UCMTable * table)549 makeToUTable(CnvExtData *extData, UCMTable *table) {
550 int32_t toUCount;
551
552 toUCount=reduceToUMappings(table);
553
554 extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
555 extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
556
557 return generateToUTable(extData, table, 0, toUCount, 0, 0);
558 }
559
560 /* from Unicode ------------------------------------------------------------- */
561
562 /*
563 * preprocessing:
564 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
565 * change each Unicode string to encode all but the first code point in 16-bit form
566 *
567 * generation:
568 * for each unique code point
569 * write an entry in the 3-stage trie
570 * check that there is only one single-code point sequence
571 * start recursion for following 16-bit input units
572 */
573
574 /*
575 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
576 * which are irrelevant for the fromUnicode extension table.
577 * Remove MBCS_FROM_U_EXT_FLAG bits.
578 * Overwrite the reverseMap with an index array to the relevant mappings.
579 * Modify the code point sequences to a generator-friendly format where
580 * the first code points remains unchanged but the following are recoded
581 * into 16-bit Unicode string form.
582 * The table must be sorted.
583 * Destroys previous data in the reverseMap.
584 */
585 static int32_t
prepareFromUMappings(UCMTable * table)586 prepareFromUMappings(UCMTable *table) {
587 UCMapping *mappings, *m;
588 int32_t *map;
589 int32_t i, j, count;
590 int8_t flag;
591
592 mappings=table->mappings;
593 map=table->reverseMap;
594 count=table->mappingsLength;
595
596 /*
597 * we do not go through the map on input because the mappings are
598 * sorted lexically
599 */
600 m=mappings;
601
602 for(i=j=0; i<count; ++m, ++i) {
603 flag=m->f;
604 if(flag>=0) {
605 flag&=MBCS_FROM_U_EXT_MASK;
606 m->f=flag;
607 }
608 if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
609 map[j++]=i;
610
611 if(m->uLen>1) {
612 /* recode all but the first code point to 16-bit Unicode */
613 UChar32 *u32;
614 UChar *u;
615 UChar32 c;
616 int32_t q, r;
617
618 u32=UCM_GET_CODE_POINTS(table, m);
619 u=(UChar *)u32; /* destructive in-place recoding */
620 for(r=2, q=1; q<m->uLen; ++q) {
621 c=u32[q];
622 U16_APPEND_UNSAFE(u, r, c);
623 }
624
625 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
626 m->uLen=(int8_t)r;
627 }
628 }
629 }
630
631 return j;
632 }
633
634 static uint32_t
getFromUBytesValue(CnvExtData * extData,UCMTable * table,UCMapping * m)635 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
636 uint8_t *bytes, *resultBytes;
637 uint32_t value;
638 int32_t u16Length, ratio;
639
640 if(m->f==2) {
641 /*
642 * no mapping, <subchar1> preferred
643 *
644 * no need to count in statistics because the subchars are already
645 * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
646 * and this non-mapping does not count for maxInUChars which are always
647 * trivially at least two if counting unmappable supplementary code points
648 */
649 return UCNV_EXT_FROM_U_SUBCHAR1;
650 }
651
652 bytes=UCM_GET_BYTES(table, m);
653 value=0;
654 switch(m->bLen) {
655 /* 1..3: store the bytes in the value word */
656 case 3:
657 value=((uint32_t)*bytes++)<<16;
658 case 2:
659 value|=((uint32_t)*bytes++)<<8;
660 case 1:
661 value|=*bytes;
662 break;
663 default:
664 /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
665 /* store the bytes in fromUBytes[] and the index in the value word */
666 value=(uint32_t)utm_countItems(extData->fromUBytes);
667 resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
668 uprv_memcpy(resultBytes, bytes, m->bLen);
669 break;
670 }
671 value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
672 if(m->f==0) {
673 value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
674 } else if(m->f==4) {
675 value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
676 }
677
678 /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
679 if(m->uLen==1) {
680 u16Length=U16_LENGTH(m->u);
681 } else {
682 u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
683 }
684
685 /* update statistics */
686 if(u16Length>extData->maxInUChars) {
687 extData->maxInUChars=u16Length;
688 }
689 if(m->bLen>extData->maxOutBytes) {
690 extData->maxOutBytes=m->bLen;
691 }
692
693 ratio=(m->bLen+(u16Length-1))/u16Length;
694 if(ratio>extData->maxBytesPerUChar) {
695 extData->maxBytesPerUChar=ratio;
696 }
697
698 return value;
699 }
700
701 /*
702 * works like generateToUTable(), except that the
703 * output section consists of two arrays, one for input UChars and one
704 * for result values
705 *
706 * also, fromUTable sections are always stored in a compact form for
707 * access via binary search
708 */
709 static UBool
generateFromUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)710 generateFromUTable(CnvExtData *extData, UCMTable *table,
711 int32_t start, int32_t limit, int32_t unitIndex,
712 uint32_t defaultValue) {
713 UCMapping *mappings, *m;
714 int32_t *map;
715 int32_t i, j, uniqueCount, count, subStart, subLimit;
716
717 UChar *uchars;
718 UChar32 low, high, prev;
719
720 UChar *sectionUChars;
721 uint32_t *sectionValues;
722
723 mappings=table->mappings;
724 map=table->reverseMap;
725
726 /* step 1: examine the input units; set low, high, uniqueCount */
727 m=mappings+map[start];
728 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
729 low=uchars[unitIndex];
730 uniqueCount=1;
731
732 prev=high=low;
733 for(i=start+1; i<limit; ++i) {
734 m=mappings+map[i];
735 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
736 high=uchars[unitIndex];
737
738 if(high!=prev) {
739 prev=high;
740 ++uniqueCount;
741 }
742 }
743
744 /* step 2: allocate the section; set count, section */
745 /* the fromUTable always stores for access via binary search */
746 count=uniqueCount;
747
748 /* allocate the section: 1 entry for the header + count for the items */
749 sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
750 sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
751
752 /* write the section header */
753 *sectionUChars++=(UChar)count;
754 *sectionValues++=defaultValue;
755
756 /* step 3: write temporary section table with subsection starts */
757 prev=low-1; /* just before low to prevent empty subsections before low */
758 j=0; /* section table index */
759 for(i=start; i<limit; ++i) {
760 m=mappings+map[i];
761 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
762 high=uchars[unitIndex];
763
764 if(high!=prev) {
765 /* start of a new subsection for unit high */
766 prev=high;
767
768 /* write the entry with the subsection start */
769 sectionUChars[j]=(UChar)high;
770 sectionValues[j]=(uint32_t)i;
771 ++j;
772 }
773 }
774 /* assert(j==count) */
775
776 /* step 4: recurse and write results */
777 subLimit=(int32_t)(sectionValues[0]);
778 for(j=0; j<count; ++j) {
779 subStart=subLimit;
780 subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
781
782 /* see if there is exactly one input unit sequence of length unitIndex+1 */
783 defaultValue=0;
784 m=mappings+map[subStart];
785 if(m->uLen==unitIndex+1) {
786 /* do not include this in generateToUTable() */
787 ++subStart;
788
789 if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
790 /* print error for multiple same-input-sequence mappings */
791 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
792 ucm_printMapping(table, m, stderr);
793 ucm_printMapping(table, mappings+map[subStart], stderr);
794 return FALSE;
795 }
796
797 defaultValue=getFromUBytesValue(extData, table, m);
798 }
799
800 if(subStart==subLimit) {
801 /* write the result for the input sequence ending here */
802 sectionValues[j]=defaultValue;
803 } else {
804 /* write the index to the subsection table */
805 sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
806
807 /* recurse */
808 if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
809 return FALSE;
810 }
811 }
812 }
813 return TRUE;
814 }
815
816 /*
817 * add entries to the fromUnicode trie,
818 * assume to be called with code points in ascending order
819 * and use that to build the trie in precompacted form
820 */
821 static void
addFromUTrieEntry(CnvExtData * extData,UChar32 c,uint32_t value)822 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
823 int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
824
825 if(value==0) {
826 return;
827 }
828
829 /*
830 * compute the index for each stage,
831 * allocate a stage block if necessary,
832 * and write the stage value
833 */
834 i1=c>>10;
835 if(i1>=extData->stage1Top) {
836 extData->stage1Top=i1+1;
837 }
838
839 nextOffset=(c>>4)&0x3f;
840
841 if(extData->stage1[i1]==0) {
842 /* allocate another block in stage 2; overlap with the previous block */
843 newBlock=extData->stage2Top;
844 min=newBlock-nextOffset; /* minimum block start with overlap */
845 while(min<newBlock && extData->stage2[newBlock-1]==0) {
846 --newBlock;
847 }
848
849 extData->stage1[i1]=(uint16_t)newBlock;
850 extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
851 if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
852 fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
853 exit(U_MEMORY_ALLOCATION_ERROR);
854 }
855 }
856
857 i2=extData->stage1[i1]+nextOffset;
858 nextOffset=c&0xf;
859
860 if(extData->stage2[i2]==0) {
861 /* allocate another block in stage 3; overlap with the previous block */
862 newBlock=extData->stage3Top;
863 min=newBlock-nextOffset; /* minimum block start with overlap */
864 while(min<newBlock && extData->stage3[newBlock-1]==0) {
865 --newBlock;
866 }
867
868 /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
869 newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
870 extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
871
872 extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
873 if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
874 fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
875 exit(U_MEMORY_ALLOCATION_ERROR);
876 }
877 }
878
879 i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
880 /*
881 * assume extData->stage3[i3]==0 because we get
882 * code points in strictly ascending order
883 */
884
885 if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
886 /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
887 extData->stage3[i3]=1;
888
889 /*
890 * precompaction is not optimal for <subchar1> |2 mappings because
891 * stage3 values for them are all the same, unlike for other mappings
892 * which all have unique values;
893 * use a simple compaction of reusing a whole block filled with these
894 * mappings
895 */
896
897 /* is the entire block filled with <subchar1> |2 mappings? */
898 if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
899 for(min=i3-nextOffset;
900 min<i3 && extData->stage3[min]==1;
901 ++min) {}
902
903 if(min==i3) {
904 /* the entire block is filled with these mappings */
905 if(extData->stage3Sub1Block!=0) {
906 /* point to the previous such block and remove this block from stage3 */
907 extData->stage2[i2]=extData->stage3Sub1Block;
908 extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
909 uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
910 } else {
911 /* remember this block's stage2 entry */
912 extData->stage3Sub1Block=extData->stage2[i2];
913 }
914 }
915 }
916 } else {
917 if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
918 fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
919 exit(U_MEMORY_ALLOCATION_ERROR);
920 }
921
922 /* roundtrip or fallback mapping */
923 extData->stage3[i3]=(uint16_t)i3b;
924 extData->stage3b[i3b]=value;
925 }
926 }
927
928 static UBool
generateFromUTrie(CnvExtData * extData,UCMTable * table,int32_t mapLength)929 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
930 UCMapping *mappings, *m;
931 int32_t *map;
932 uint32_t value;
933 int32_t subStart, subLimit;
934
935 UChar32 *codePoints;
936 UChar32 c, next;
937
938 if(mapLength==0) {
939 return TRUE;
940 }
941
942 mappings=table->mappings;
943 map=table->reverseMap;
944
945 /*
946 * iterate over same-initial-code point mappings,
947 * enter the initial code point into the trie,
948 * and start a recursion on the corresponding mappings section
949 * with generateFromUTable()
950 */
951 m=mappings+map[0];
952 codePoints=UCM_GET_CODE_POINTS(table, m);
953 next=codePoints[0];
954 subLimit=0;
955 while(subLimit<mapLength) {
956 /* get a new subsection of mappings starting with the same code point */
957 subStart=subLimit;
958 c=next;
959 while(next==c && ++subLimit<mapLength) {
960 m=mappings+map[subLimit];
961 codePoints=UCM_GET_CODE_POINTS(table, m);
962 next=codePoints[0];
963 }
964
965 /*
966 * compute the value for this code point;
967 * if there is a mapping for this code point alone, it is at subStart
968 * because the table is sorted lexically
969 */
970 value=0;
971 m=mappings+map[subStart];
972 codePoints=UCM_GET_CODE_POINTS(table, m);
973 if(m->uLen==1) {
974 /* do not include this in generateFromUTable() */
975 ++subStart;
976
977 if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
978 /* print error for multiple same-input-sequence mappings */
979 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
980 ucm_printMapping(table, m, stderr);
981 ucm_printMapping(table, mappings+map[subStart], stderr);
982 return FALSE;
983 }
984
985 value=getFromUBytesValue(extData, table, m);
986 }
987
988 if(subStart==subLimit) {
989 /* write the result for this one code point */
990 addFromUTrieEntry(extData, c, value);
991 } else {
992 /* write the index to the subsection table */
993 addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
994
995 /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
996 if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
997 return FALSE;
998 }
999 }
1000 }
1001 return TRUE;
1002 }
1003
1004 /*
1005 * Generate the fromU data structures from the input table.
1006 * The input table must be sorted, and all precision flags must be 0..3.
1007 * This function will modify the table's reverseMap.
1008 */
1009 static UBool
makeFromUTable(CnvExtData * extData,UCMTable * table)1010 makeFromUTable(CnvExtData *extData, UCMTable *table) {
1011 uint16_t *stage1;
1012 int32_t i, stage1Top, fromUCount;
1013
1014 fromUCount=prepareFromUMappings(table);
1015
1016 extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
1017 extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
1018 extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
1019
1020 /* allocate all-unassigned stage blocks */
1021 extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
1022 extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
1023
1024 /*
1025 * stage 3b stores only unique values, and in
1026 * index 0: 0 for "no mapping"
1027 * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
1028 */
1029 extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
1030 extData->stage3bTop=2;
1031
1032 /* allocate the first entry in the fromUTable because index 0 means "no result" */
1033 utm_alloc(extData->fromUTableUChars);
1034 utm_alloc(extData->fromUTableValues);
1035
1036 if(!generateFromUTrie(extData, table, fromUCount)) {
1037 return FALSE;
1038 }
1039
1040 /*
1041 * offset the stage 1 trie entries by stage1Top because they will
1042 * be stored in a single array
1043 */
1044 stage1=extData->stage1;
1045 stage1Top=extData->stage1Top;
1046 for(i=0; i<stage1Top; ++i) {
1047 stage1[i]=(uint16_t)(stage1[i]+stage1Top);
1048 }
1049
1050 return TRUE;
1051 }
1052
1053 /* -------------------------------------------------------------------------- */
1054
1055 static UBool
CnvExtAddTable(NewConverter * cnvData,UCMTable * table,UConverterStaticData * staticData)1056 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
1057 CnvExtData *extData;
1058
1059 if(table->unicodeMask&UCNV_HAS_SURROGATES) {
1060 fprintf(stderr, "error: contains mappings for surrogate code points\n");
1061 return FALSE;
1062 }
1063
1064 staticData->conversionType=UCNV_MBCS;
1065
1066 extData=(CnvExtData *)cnvData;
1067
1068 /*
1069 * assume that the table is sorted
1070 *
1071 * call the functions in this order because
1072 * makeToUTable() modifies the original reverseMap,
1073 * makeFromUTable() writes a whole new mapping into reverseMap
1074 */
1075 return
1076 makeToUTable(extData, table) &&
1077 makeFromUTable(extData, table);
1078 }
1079