1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  */
6 
7 #ifndef _UAPI_LINUX_VSOC_SHM_H
8 #define _UAPI_LINUX_VSOC_SHM_H
9 
10 #include <linux/types.h>
11 
12 /**
13  * A permission is a token that permits a receiver to read and/or write an area
14  * of memory within a Vsoc region.
15  *
16  * An fd_scoped permission grants both read and write access, and can be
17  * attached to a file description (see open(2)).
18  * Ownership of the area can then be shared by passing a file descriptor
19  * among processes.
20  *
21  * begin_offset and end_offset define the area of memory that is controlled by
22  * the permission. owner_offset points to a word, also in shared memory, that
23  * controls ownership of the area.
24  *
25  * ownership of the region expires when the associated file description is
26  * released.
27  *
28  * At most one permission can be attached to each file description.
29  *
30  * This is useful when implementing HALs like gralloc that scope and pass
31  * ownership of shared resources via file descriptors.
32  *
33  * The caller is responsibe for doing any fencing.
34  *
35  * The calling process will normally identify a currently free area of
36  * memory. It will construct a proposed fd_scoped_permission_arg structure:
37  *
38  *   begin_offset and end_offset describe the area being claimed
39  *
40  *   owner_offset points to the location in shared memory that indicates the
41  *   owner of the area.
42  *
43  *   owned_value is the value that will be stored in owner_offset iff the
44  *   permission can be granted. It must be different than VSOC_REGION_FREE.
45  *
46  * Two fd_scoped_permission structures are compatible if they vary only by
47  * their owned_value fields.
48  *
49  * The driver ensures that, for any group of simultaneous callers proposing
50  * compatible fd_scoped_permissions, it will accept exactly one of the
51  * propopsals. The other callers will get a failure with errno of EAGAIN.
52  *
53  * A process receiving a file descriptor can identify the region being
54  * granted using the VSOC_GET_FD_SCOPED_PERMISSION ioctl.
55  */
56 struct fd_scoped_permission {
57 	__u32 begin_offset;
58 	__u32 end_offset;
59 	__u32 owner_offset;
60 	__u32 owned_value;
61 };
62 
63 /*
64  * This value represents a free area of memory. The driver expects to see this
65  * value at owner_offset when creating a permission otherwise it will not do it,
66  * and will write this value back once the permission is no longer needed.
67  */
68 #define VSOC_REGION_FREE ((__u32)0)
69 
70 /**
71  * ioctl argument for VSOC_CREATE_FD_SCOPE_PERMISSION
72  */
73 struct fd_scoped_permission_arg {
74 	struct fd_scoped_permission perm;
75 	__s32 managed_region_fd;
76 };
77 
78 #define VSOC_NODE_FREE ((__u32)0)
79 
80 /*
81  * Describes a signal table in shared memory. Each non-zero entry in the
82  * table indicates that the receiver should signal the futex at the given
83  * offset. Offsets are relative to the region, not the shared memory window.
84  *
85  * interrupt_signalled_offset is used to reliably signal interrupts across the
86  * vmm boundary. There are two roles: transmitter and receiver. For example,
87  * in the host_to_guest_signal_table the host is the transmitter and the
88  * guest is the receiver. The protocol is as follows:
89  *
90  * 1. The transmitter should convert the offset of the futex to an offset
91  *    in the signal table [0, (1 << num_nodes_lg2))
92  *    The transmitter can choose any appropriate hashing algorithm, including
93  *    hash = futex_offset & ((1 << num_nodes_lg2) - 1)
94  *
95  * 3. The transmitter should atomically compare and swap futex_offset with 0
96  *    at hash. There are 3 possible outcomes
97  *      a. The swap fails because the futex_offset is already in the table.
98  *         The transmitter should stop.
99  *      b. Some other offset is in the table. This is a hash collision. The
100  *         transmitter should move to another table slot and try again. One
101  *         possible algorithm:
102  *         hash = (hash + 1) & ((1 << num_nodes_lg2) - 1)
103  *      c. The swap worked. Continue below.
104  *
105  * 3. The transmitter atomically swaps 1 with the value at the
106  *    interrupt_signalled_offset. There are two outcomes:
107  *      a. The prior value was 1. In this case an interrupt has already been
108  *         posted. The transmitter is done.
109  *      b. The prior value was 0, indicating that the receiver may be sleeping.
110  *         The transmitter will issue an interrupt.
111  *
112  * 4. On waking the receiver immediately exchanges a 0 with the
113  *    interrupt_signalled_offset. If it receives a 0 then this a spurious
114  *    interrupt. That may occasionally happen in the current protocol, but
115  *    should be rare.
116  *
117  * 5. The receiver scans the signal table by atomicaly exchanging 0 at each
118  *    location. If a non-zero offset is returned from the exchange the
119  *    receiver wakes all sleepers at the given offset:
120  *      futex((int*)(region_base + old_value), FUTEX_WAKE, MAX_INT);
121  *
122  * 6. The receiver thread then does a conditional wait, waking immediately
123  *    if the value at interrupt_signalled_offset is non-zero. This catches cases
124  *    here additional  signals were posted while the table was being scanned.
125  *    On the guest the wait is handled via the VSOC_WAIT_FOR_INCOMING_INTERRUPT
126  *    ioctl.
127  */
128 struct vsoc_signal_table_layout {
129 	/* log_2(Number of signal table entries) */
130 	__u32 num_nodes_lg2;
131 	/*
132 	 * Offset to the first signal table entry relative to the start of the
133 	 * region
134 	 */
135 	__u32 futex_uaddr_table_offset;
136 	/*
137 	 * Offset to an atomic_t / atomic uint32_t. A non-zero value indicates
138 	 * that one or more offsets are currently posted in the table.
139 	 * semi-unique access to an entry in the table
140 	 */
141 	__u32 interrupt_signalled_offset;
142 };
143 
144 #define VSOC_REGION_WHOLE ((__s32)0)
145 #define VSOC_DEVICE_NAME_SZ 16
146 
147 /**
148  * Each HAL would (usually) talk to a single device region
149  * Mulitple entities care about these regions:
150  * - The ivshmem_server will populate the regions in shared memory
151  * - The guest kernel will read the region, create minor device nodes, and
152  *   allow interested parties to register for FUTEX_WAKE events in the region
153  * - HALs will access via the minor device nodes published by the guest kernel
154  * - Host side processes will access the region via the ivshmem_server:
155  *   1. Pass name to ivshmem_server at a UNIX socket
156  *   2. ivshmemserver will reply with 2 fds:
157  *     - host->guest doorbell fd
158  *     - guest->host doorbell fd
159  *     - fd for the shared memory region
160  *     - region offset
161  *   3. Start a futex receiver thread on the doorbell fd pointed at the
162  *      signal_nodes
163  */
164 struct vsoc_device_region {
165 	__u16 current_version;
166 	__u16 min_compatible_version;
167 	__u32 region_begin_offset;
168 	__u32 region_end_offset;
169 	__u32 offset_of_region_data;
170 	struct vsoc_signal_table_layout guest_to_host_signal_table;
171 	struct vsoc_signal_table_layout host_to_guest_signal_table;
172 	/* Name of the device. Must always be terminated with a '\0', so
173 	 * the longest supported device name is 15 characters.
174 	 */
175 	char device_name[VSOC_DEVICE_NAME_SZ];
176 	/* There are two ways that permissions to access regions are handled:
177 	 *   - When subdivided_by is VSOC_REGION_WHOLE, any process that can
178 	 *     open the device node for the region gains complete access to it.
179 	 *   - When subdivided is set processes that open the region cannot
180 	 *     access it. Access to a sub-region must be established by invoking
181 	 *     the VSOC_CREATE_FD_SCOPE_PERMISSION ioctl on the region
182 	 *     referenced in subdivided_by, providing a fileinstance
183 	 *     (represented by a fd) opened on this region.
184 	 */
185 	__u32 managed_by;
186 };
187 
188 /*
189  * The vsoc layout descriptor.
190  * The first 4K should be reserved for the shm header and region descriptors.
191  * The regions should be page aligned.
192  */
193 
194 struct vsoc_shm_layout_descriptor {
195 	__u16 major_version;
196 	__u16 minor_version;
197 
198 	/* size of the shm. This may be redundant but nice to have */
199 	__u32 size;
200 
201 	/* number of shared memory regions */
202 	__u32 region_count;
203 
204 	/* The offset to the start of region descriptors */
205 	__u32 vsoc_region_desc_offset;
206 };
207 
208 /*
209  * This specifies the current version that should be stored in
210  * vsoc_shm_layout_descriptor.major_version and
211  * vsoc_shm_layout_descriptor.minor_version.
212  * It should be updated only if the vsoc_device_region and
213  * vsoc_shm_layout_descriptor structures have changed.
214  * Versioning within each region is transferred
215  * via the min_compatible_version and current_version fields in
216  * vsoc_device_region. The driver does not consult these fields: they are left
217  * for the HALs and host processes and will change independently of the layout
218  * version.
219  */
220 #define CURRENT_VSOC_LAYOUT_MAJOR_VERSION 2
221 #define CURRENT_VSOC_LAYOUT_MINOR_VERSION 0
222 
223 #define VSOC_CREATE_FD_SCOPED_PERMISSION \
224 	_IOW(0xF5, 0, struct fd_scoped_permission)
225 #define VSOC_GET_FD_SCOPED_PERMISSION _IOR(0xF5, 1, struct fd_scoped_permission)
226 
227 /*
228  * This is used to signal the host to scan the guest_to_host_signal_table
229  * for new futexes to wake. This sends an interrupt if one is not already
230  * in flight.
231  */
232 #define VSOC_MAYBE_SEND_INTERRUPT_TO_HOST _IO(0xF5, 2)
233 
234 /*
235  * When this returns the guest will scan host_to_guest_signal_table to
236  * check for new futexes to wake.
237  */
238 /* TODO(ghartman): Consider moving this to the bottom half */
239 #define VSOC_WAIT_FOR_INCOMING_INTERRUPT _IO(0xF5, 3)
240 
241 /*
242  * Guest HALs will use this to retrieve the region description after
243  * opening their device node.
244  */
245 #define VSOC_DESCRIBE_REGION _IOR(0xF5, 4, struct vsoc_device_region)
246 
247 /*
248  * Wake any threads that may be waiting for a host interrupt on this region.
249  * This is mostly used during shutdown.
250  */
251 #define VSOC_SELF_INTERRUPT _IO(0xF5, 5)
252 
253 /*
254  * This is used to signal the host to scan the guest_to_host_signal_table
255  * for new futexes to wake. This sends an interrupt unconditionally.
256  */
257 #define VSOC_SEND_INTERRUPT_TO_HOST _IO(0xF5, 6)
258 
259 enum wait_types {
260 	VSOC_WAIT_UNDEFINED = 0,
261 	VSOC_WAIT_IF_EQUAL = 1,
262 	VSOC_WAIT_IF_EQUAL_TIMEOUT = 2
263 };
264 
265 /*
266  * Wait for a condition to be true
267  *
268  * Note, this is sized and aligned so the 32 bit and 64 bit layouts are
269  * identical.
270  */
271 struct vsoc_cond_wait {
272 	/* Input: Offset of the 32 bit word to check */
273 	__u32 offset;
274 	/* Input: Value that will be compared with the offset */
275 	__u32 value;
276 	/* Monotonic time to wake at in seconds */
277 	__u64 wake_time_sec;
278 	/* Input: Monotonic time to wait in nanoseconds */
279 	__u32 wake_time_nsec;
280 	/* Input: Type of wait */
281 	__u32 wait_type;
282 	/* Output: Number of times the thread woke before returning. */
283 	__u32 wakes;
284 	/* Ensure that we're 8-byte aligned and 8 byte length for 32/64 bit
285 	 * compatibility.
286 	 */
287 	__u32 reserved_1;
288 };
289 
290 #define VSOC_COND_WAIT _IOWR(0xF5, 7, struct vsoc_cond_wait)
291 
292 /* Wake any local threads waiting at the offset given in arg */
293 #define VSOC_COND_WAKE _IO(0xF5, 8)
294 
295 #endif /* _UAPI_LINUX_VSOC_SHM_H */
296