1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class RealType = double>
15 // class exponential_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g);
18 
19 #include <random>
20 #include <cassert>
21 #include <vector>
22 #include <numeric>
23 #include <cstddef>
24 
25 template <class T>
26 inline
27 T
sqr(T x)28 sqr(T x)
29 {
30     return x * x;
31 }
32 
main()33 int main()
34 {
35     {
36         typedef std::exponential_distribution<> D;
37         typedef std::mt19937 G;
38         G g;
39         D d(.75);
40         const int N = 1000000;
41         std::vector<D::result_type> u;
42         for (int i = 0; i < N; ++i)
43         {
44             D::result_type v = d(g);
45             assert(d.min() < v);
46             u.push_back(v);
47         }
48         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
49         double var = 0;
50         double skew = 0;
51         double kurtosis = 0;
52         for (std::size_t i = 0; i < u.size(); ++i)
53         {
54             double dbl = (u[i] - mean);
55             double d2 = sqr(dbl);
56             var += d2;
57             skew += dbl * d2;
58             kurtosis += d2 * d2;
59         }
60         var /= u.size();
61         double dev = std::sqrt(var);
62         skew /= u.size() * dev * var;
63         kurtosis /= u.size() * var * var;
64         kurtosis -= 3;
65         double x_mean = 1/d.lambda();
66         double x_var = 1/sqr(d.lambda());
67         double x_skew = 2;
68         double x_kurtosis = 6;
69         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
70         assert(std::abs((var - x_var) / x_var) < 0.01);
71         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
72         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
73     }
74     {
75         typedef std::exponential_distribution<> D;
76         typedef std::mt19937 G;
77         G g;
78         D d(1);
79         const int N = 1000000;
80         std::vector<D::result_type> u;
81         for (int i = 0; i < N; ++i)
82         {
83             D::result_type v = d(g);
84             assert(d.min() < v);
85             u.push_back(v);
86         }
87         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
88         double var = 0;
89         double skew = 0;
90         double kurtosis = 0;
91         for (std::size_t i = 0; i < u.size(); ++i)
92         {
93             double dbl = (u[i] - mean);
94             double d2 = sqr(dbl);
95             var += d2;
96             skew += dbl * d2;
97             kurtosis += d2 * d2;
98         }
99         var /= u.size();
100         double dev = std::sqrt(var);
101         skew /= u.size() * dev * var;
102         kurtosis /= u.size() * var * var;
103         kurtosis -= 3;
104         double x_mean = 1/d.lambda();
105         double x_var = 1/sqr(d.lambda());
106         double x_skew = 2;
107         double x_kurtosis = 6;
108         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
109         assert(std::abs((var - x_var) / x_var) < 0.01);
110         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
111         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
112     }
113     {
114         typedef std::exponential_distribution<> D;
115         typedef std::mt19937 G;
116         G g;
117         D d(10);
118         const int N = 1000000;
119         std::vector<D::result_type> u;
120         for (int i = 0; i < N; ++i)
121         {
122             D::result_type v = d(g);
123             assert(d.min() < v);
124             u.push_back(v);
125         }
126         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
127         double var = 0;
128         double skew = 0;
129         double kurtosis = 0;
130         for (std::size_t i = 0; i < u.size(); ++i)
131         {
132             double dbl = (u[i] - mean);
133             double d2 = sqr(dbl);
134             var += d2;
135             skew += dbl * d2;
136             kurtosis += d2 * d2;
137         }
138         var /= u.size();
139         double dev = std::sqrt(var);
140         skew /= u.size() * dev * var;
141         kurtosis /= u.size() * var * var;
142         kurtosis -= 3;
143         double x_mean = 1/d.lambda();
144         double x_var = 1/sqr(d.lambda());
145         double x_skew = 2;
146         double x_kurtosis = 6;
147         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
148         assert(std::abs((var - x_var) / x_var) < 0.01);
149         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
150         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
151     }
152 }
153