1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class RealType = double>
15 // class extreme_value_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
18 
19 #include <random>
20 #include <cassert>
21 #include <vector>
22 #include <numeric>
23 
24 template <class T>
25 inline
26 T
sqr(T x)27 sqr(T x)
28 {
29     return x * x;
30 }
31 
32 void
test1()33 test1()
34 {
35     typedef std::extreme_value_distribution<> D;
36     typedef D::param_type P;
37     typedef std::mt19937 G;
38     G g;
39     D d(-0.5, 1);
40     P p(0.5, 2);
41     const int N = 1000000;
42     std::vector<D::result_type> u;
43     for (int i = 0; i < N; ++i)
44     {
45         D::result_type v = d(g, p);
46         u.push_back(v);
47     }
48     double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
49     double var = 0;
50     double skew = 0;
51     double kurtosis = 0;
52     for (unsigned i = 0; i < u.size(); ++i)
53     {
54         double dbl = (u[i] - mean);
55         double d2 = sqr(dbl);
56         var += d2;
57         skew += dbl * d2;
58         kurtosis += d2 * d2;
59     }
60     var /= u.size();
61     double dev = std::sqrt(var);
62     skew /= u.size() * dev * var;
63     kurtosis /= u.size() * var * var;
64     kurtosis -= 3;
65     double x_mean = p.a() + p.b() * 0.577215665;
66     double x_var = sqr(p.b()) * 1.644934067;
67     double x_skew = 1.139547;
68     double x_kurtosis = 12./5;
69     assert(std::abs((mean - x_mean) / x_mean) < 0.01);
70     assert(std::abs((var - x_var) / x_var) < 0.01);
71     assert(std::abs((skew - x_skew) / x_skew) < 0.01);
72     assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
73 }
74 
75 void
test2()76 test2()
77 {
78     typedef std::extreme_value_distribution<> D;
79     typedef D::param_type P;
80     typedef std::mt19937 G;
81     G g;
82     D d(-0.5, 1);
83     P p(1, 2);
84     const int N = 1000000;
85     std::vector<D::result_type> u;
86     for (int i = 0; i < N; ++i)
87     {
88         D::result_type v = d(g, p);
89         u.push_back(v);
90     }
91     double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
92     double var = 0;
93     double skew = 0;
94     double kurtosis = 0;
95     for (unsigned i = 0; i < u.size(); ++i)
96     {
97         double dbl = (u[i] - mean);
98         double d2 = sqr(dbl);
99         var += d2;
100         skew += dbl * d2;
101         kurtosis += d2 * d2;
102     }
103     var /= u.size();
104     double dev = std::sqrt(var);
105     skew /= u.size() * dev * var;
106     kurtosis /= u.size() * var * var;
107     kurtosis -= 3;
108     double x_mean = p.a() + p.b() * 0.577215665;
109     double x_var = sqr(p.b()) * 1.644934067;
110     double x_skew = 1.139547;
111     double x_kurtosis = 12./5;
112     assert(std::abs((mean - x_mean) / x_mean) < 0.01);
113     assert(std::abs((var - x_var) / x_var) < 0.01);
114     assert(std::abs((skew - x_skew) / x_skew) < 0.01);
115     assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
116 }
117 
118 void
test3()119 test3()
120 {
121     typedef std::extreme_value_distribution<> D;
122     typedef D::param_type P;
123     typedef std::mt19937 G;
124     G g;
125     D d(-0.5, 1);
126     P p(1.5, 3);
127     const int N = 1000000;
128     std::vector<D::result_type> u;
129     for (int i = 0; i < N; ++i)
130     {
131         D::result_type v = d(g, p);
132         u.push_back(v);
133     }
134     double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
135     double var = 0;
136     double skew = 0;
137     double kurtosis = 0;
138     for (unsigned i = 0; i < u.size(); ++i)
139     {
140         double dbl = (u[i] - mean);
141         double d2 = sqr(dbl);
142         var += d2;
143         skew += dbl * d2;
144         kurtosis += d2 * d2;
145     }
146     var /= u.size();
147     double dev = std::sqrt(var);
148     skew /= u.size() * dev * var;
149     kurtosis /= u.size() * var * var;
150     kurtosis -= 3;
151     double x_mean = p.a() + p.b() * 0.577215665;
152     double x_var = sqr(p.b()) * 1.644934067;
153     double x_skew = 1.139547;
154     double x_kurtosis = 12./5;
155     assert(std::abs((mean - x_mean) / x_mean) < 0.01);
156     assert(std::abs((var - x_var) / x_var) < 0.01);
157     assert(std::abs((skew - x_skew) / x_skew) < 0.01);
158     assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
159 }
160 
161 void
test4()162 test4()
163 {
164     typedef std::extreme_value_distribution<> D;
165     typedef D::param_type P;
166     typedef std::mt19937 G;
167     G g;
168     D d(-0.5, 1);
169     P p(3, 4);
170     const int N = 1000000;
171     std::vector<D::result_type> u;
172     for (int i = 0; i < N; ++i)
173     {
174         D::result_type v = d(g, p);
175         u.push_back(v);
176     }
177     double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
178     double var = 0;
179     double skew = 0;
180     double kurtosis = 0;
181     for (unsigned i = 0; i < u.size(); ++i)
182     {
183         double dbl = (u[i] - mean);
184         double d2 = sqr(dbl);
185         var += d2;
186         skew += dbl * d2;
187         kurtosis += d2 * d2;
188     }
189     var /= u.size();
190     double dev = std::sqrt(var);
191     skew /= u.size() * dev * var;
192     kurtosis /= u.size() * var * var;
193     kurtosis -= 3;
194     double x_mean = p.a() + p.b() * 0.577215665;
195     double x_var = sqr(p.b()) * 1.644934067;
196     double x_skew = 1.139547;
197     double x_kurtosis = 12./5;
198     assert(std::abs((mean - x_mean) / x_mean) < 0.01);
199     assert(std::abs((var - x_var) / x_var) < 0.01);
200     assert(std::abs((skew - x_skew) / x_skew) < 0.01);
201     assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
202 }
203 
main()204 int main()
205 {
206     test1();
207     test2();
208     test3();
209     test4();
210 }
211