1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15
16 #include "benchmark/benchmark.h"
17
18 #include <algorithm>
19 #include <cmath>
20 #include <numeric>
21 #include <string>
22 #include <vector>
23 #include "check.h"
24 #include "statistics.h"
25
26 namespace benchmark {
27
__anon3e2216640102(const std::vector<double>& v) 28 auto StatisticsSum = [](const std::vector<double>& v) {
29 return std::accumulate(v.begin(), v.end(), 0.0);
30 };
31
StatisticsMean(const std::vector<double> & v)32 double StatisticsMean(const std::vector<double>& v) {
33 if (v.empty()) return 0.0;
34 return StatisticsSum(v) * (1.0 / v.size());
35 }
36
StatisticsMedian(const std::vector<double> & v)37 double StatisticsMedian(const std::vector<double>& v) {
38 if (v.size() < 3) return StatisticsMean(v);
39 std::vector<double> copy(v);
40
41 auto center = copy.begin() + v.size() / 2;
42 std::nth_element(copy.begin(), center, copy.end());
43
44 // did we have an odd number of samples?
45 // if yes, then center is the median
46 // it no, then we are looking for the average between center and the value
47 // before
48 if (v.size() % 2 == 1) return *center;
49 auto center2 = copy.begin() + v.size() / 2 - 1;
50 std::nth_element(copy.begin(), center2, copy.end());
51 return (*center + *center2) / 2.0;
52 }
53
54 // Return the sum of the squares of this sample set
__anon3e2216640202(const std::vector<double>& v) 55 auto SumSquares = [](const std::vector<double>& v) {
56 return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
57 };
58
__anon3e2216640302(const double dat) 59 auto Sqr = [](const double dat) { return dat * dat; };
__anon3e2216640402(const double dat) 60 auto Sqrt = [](const double dat) {
61 // Avoid NaN due to imprecision in the calculations
62 if (dat < 0.0) return 0.0;
63 return std::sqrt(dat);
64 };
65
StatisticsStdDev(const std::vector<double> & v)66 double StatisticsStdDev(const std::vector<double>& v) {
67 const auto mean = StatisticsMean(v);
68 if (v.empty()) return mean;
69
70 // Sample standard deviation is undefined for n = 1
71 if (v.size() == 1) return 0.0;
72
73 const double avg_squares = SumSquares(v) * (1.0 / v.size());
74 return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
75 }
76
ComputeStats(const std::vector<BenchmarkReporter::Run> & reports)77 std::vector<BenchmarkReporter::Run> ComputeStats(
78 const std::vector<BenchmarkReporter::Run>& reports) {
79 typedef BenchmarkReporter::Run Run;
80 std::vector<Run> results;
81
82 auto error_count =
83 std::count_if(reports.begin(), reports.end(),
84 [](Run const& run) { return run.error_occurred; });
85
86 if (reports.size() - error_count < 2) {
87 // We don't report aggregated data if there was a single run.
88 return results;
89 }
90
91 // Accumulators.
92 std::vector<double> real_accumulated_time_stat;
93 std::vector<double> cpu_accumulated_time_stat;
94
95 real_accumulated_time_stat.reserve(reports.size());
96 cpu_accumulated_time_stat.reserve(reports.size());
97
98 // All repetitions should be run with the same number of iterations so we
99 // can take this information from the first benchmark.
100 int64_t const run_iterations = reports.front().iterations;
101 // create stats for user counters
102 struct CounterStat {
103 Counter c;
104 std::vector<double> s;
105 };
106 std::map<std::string, CounterStat> counter_stats;
107 for (Run const& r : reports) {
108 for (auto const& cnt : r.counters) {
109 auto it = counter_stats.find(cnt.first);
110 if (it == counter_stats.end()) {
111 counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
112 it = counter_stats.find(cnt.first);
113 it->second.s.reserve(reports.size());
114 } else {
115 CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
116 }
117 }
118 }
119
120 // Populate the accumulators.
121 for (Run const& run : reports) {
122 CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
123 CHECK_EQ(run_iterations, run.iterations);
124 if (run.error_occurred) continue;
125 real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
126 cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
127 // user counters
128 for (auto const& cnt : run.counters) {
129 auto it = counter_stats.find(cnt.first);
130 CHECK_NE(it, counter_stats.end());
131 it->second.s.emplace_back(cnt.second);
132 }
133 }
134
135 // Only add label if it is same for all runs
136 std::string report_label = reports[0].report_label;
137 for (std::size_t i = 1; i < reports.size(); i++) {
138 if (reports[i].report_label != report_label) {
139 report_label = "";
140 break;
141 }
142 }
143
144 const double iteration_rescale_factor =
145 double(reports.size()) / double(run_iterations);
146
147 for (const auto& Stat : *reports[0].statistics) {
148 // Get the data from the accumulator to BenchmarkReporter::Run's.
149 Run data;
150 data.run_name = reports[0].benchmark_name();
151 data.run_type = BenchmarkReporter::Run::RT_Aggregate;
152 data.aggregate_name = Stat.name_;
153 data.report_label = report_label;
154
155 // It is incorrect to say that an aggregate is computed over
156 // run's iterations, because those iterations already got averaged.
157 // Similarly, if there are N repetitions with 1 iterations each,
158 // an aggregate will be computed over N measurements, not 1.
159 // Thus it is best to simply use the count of separate reports.
160 data.iterations = reports.size();
161
162 data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
163 data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
164
165 // We will divide these times by data.iterations when reporting, but the
166 // data.iterations is not nessesairly the scale of these measurements,
167 // because in each repetition, these timers are sum over all the iterations.
168 // And if we want to say that the stats are over N repetitions and not
169 // M iterations, we need to multiply these by (N/M).
170 data.real_accumulated_time *= iteration_rescale_factor;
171 data.cpu_accumulated_time *= iteration_rescale_factor;
172
173 data.time_unit = reports[0].time_unit;
174
175 // user counters
176 for (auto const& kv : counter_stats) {
177 // Do *NOT* rescale the custom counters. They are already properly scaled.
178 const auto uc_stat = Stat.compute_(kv.second.s);
179 auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
180 counter_stats[kv.first].c.oneK);
181 data.counters[kv.first] = c;
182 }
183
184 results.push_back(data);
185 }
186
187 return results;
188 }
189
190 } // end namespace benchmark
191