1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
2 // Copyright 2017 Roman Lebedev. All rights reserved.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //     http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 #include "benchmark/benchmark.h"
17 
18 #include <algorithm>
19 #include <cmath>
20 #include <numeric>
21 #include <string>
22 #include <vector>
23 #include "check.h"
24 #include "statistics.h"
25 
26 namespace benchmark {
27 
__anon3e2216640102(const std::vector<double>& v) 28 auto StatisticsSum = [](const std::vector<double>& v) {
29   return std::accumulate(v.begin(), v.end(), 0.0);
30 };
31 
StatisticsMean(const std::vector<double> & v)32 double StatisticsMean(const std::vector<double>& v) {
33   if (v.empty()) return 0.0;
34   return StatisticsSum(v) * (1.0 / v.size());
35 }
36 
StatisticsMedian(const std::vector<double> & v)37 double StatisticsMedian(const std::vector<double>& v) {
38   if (v.size() < 3) return StatisticsMean(v);
39   std::vector<double> copy(v);
40 
41   auto center = copy.begin() + v.size() / 2;
42   std::nth_element(copy.begin(), center, copy.end());
43 
44   // did we have an odd number of samples?
45   // if yes, then center is the median
46   // it no, then we are looking for the average between center and the value
47   // before
48   if (v.size() % 2 == 1) return *center;
49   auto center2 = copy.begin() + v.size() / 2 - 1;
50   std::nth_element(copy.begin(), center2, copy.end());
51   return (*center + *center2) / 2.0;
52 }
53 
54 // Return the sum of the squares of this sample set
__anon3e2216640202(const std::vector<double>& v) 55 auto SumSquares = [](const std::vector<double>& v) {
56   return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
57 };
58 
__anon3e2216640302(const double dat) 59 auto Sqr = [](const double dat) { return dat * dat; };
__anon3e2216640402(const double dat) 60 auto Sqrt = [](const double dat) {
61   // Avoid NaN due to imprecision in the calculations
62   if (dat < 0.0) return 0.0;
63   return std::sqrt(dat);
64 };
65 
StatisticsStdDev(const std::vector<double> & v)66 double StatisticsStdDev(const std::vector<double>& v) {
67   const auto mean = StatisticsMean(v);
68   if (v.empty()) return mean;
69 
70   // Sample standard deviation is undefined for n = 1
71   if (v.size() == 1) return 0.0;
72 
73   const double avg_squares = SumSquares(v) * (1.0 / v.size());
74   return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
75 }
76 
ComputeStats(const std::vector<BenchmarkReporter::Run> & reports)77 std::vector<BenchmarkReporter::Run> ComputeStats(
78     const std::vector<BenchmarkReporter::Run>& reports) {
79   typedef BenchmarkReporter::Run Run;
80   std::vector<Run> results;
81 
82   auto error_count =
83       std::count_if(reports.begin(), reports.end(),
84                     [](Run const& run) { return run.error_occurred; });
85 
86   if (reports.size() - error_count < 2) {
87     // We don't report aggregated data if there was a single run.
88     return results;
89   }
90 
91   // Accumulators.
92   std::vector<double> real_accumulated_time_stat;
93   std::vector<double> cpu_accumulated_time_stat;
94 
95   real_accumulated_time_stat.reserve(reports.size());
96   cpu_accumulated_time_stat.reserve(reports.size());
97 
98   // All repetitions should be run with the same number of iterations so we
99   // can take this information from the first benchmark.
100   int64_t const run_iterations = reports.front().iterations;
101   // create stats for user counters
102   struct CounterStat {
103     Counter c;
104     std::vector<double> s;
105   };
106   std::map<std::string, CounterStat> counter_stats;
107   for (Run const& r : reports) {
108     for (auto const& cnt : r.counters) {
109       auto it = counter_stats.find(cnt.first);
110       if (it == counter_stats.end()) {
111         counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
112         it = counter_stats.find(cnt.first);
113         it->second.s.reserve(reports.size());
114       } else {
115         CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
116       }
117     }
118   }
119 
120   // Populate the accumulators.
121   for (Run const& run : reports) {
122     CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
123     CHECK_EQ(run_iterations, run.iterations);
124     if (run.error_occurred) continue;
125     real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
126     cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
127     // user counters
128     for (auto const& cnt : run.counters) {
129       auto it = counter_stats.find(cnt.first);
130       CHECK_NE(it, counter_stats.end());
131       it->second.s.emplace_back(cnt.second);
132     }
133   }
134 
135   // Only add label if it is same for all runs
136   std::string report_label = reports[0].report_label;
137   for (std::size_t i = 1; i < reports.size(); i++) {
138     if (reports[i].report_label != report_label) {
139       report_label = "";
140       break;
141     }
142   }
143 
144   const double iteration_rescale_factor =
145       double(reports.size()) / double(run_iterations);
146 
147   for (const auto& Stat : *reports[0].statistics) {
148     // Get the data from the accumulator to BenchmarkReporter::Run's.
149     Run data;
150     data.run_name = reports[0].benchmark_name();
151     data.run_type = BenchmarkReporter::Run::RT_Aggregate;
152     data.aggregate_name = Stat.name_;
153     data.report_label = report_label;
154 
155     // It is incorrect to say that an aggregate is computed over
156     // run's iterations, because those iterations already got averaged.
157     // Similarly, if there are N repetitions with 1 iterations each,
158     // an aggregate will be computed over N measurements, not 1.
159     // Thus it is best to simply use the count of separate reports.
160     data.iterations = reports.size();
161 
162     data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
163     data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
164 
165     // We will divide these times by data.iterations when reporting, but the
166     // data.iterations is not nessesairly the scale of these measurements,
167     // because in each repetition, these timers are sum over all the iterations.
168     // And if we want to say that the stats are over N repetitions and not
169     // M iterations, we need to multiply these by (N/M).
170     data.real_accumulated_time *= iteration_rescale_factor;
171     data.cpu_accumulated_time *= iteration_rescale_factor;
172 
173     data.time_unit = reports[0].time_unit;
174 
175     // user counters
176     for (auto const& kv : counter_stats) {
177       // Do *NOT* rescale the custom counters. They are already properly scaled.
178       const auto uc_stat = Stat.compute_(kv.second.s);
179       auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
180                        counter_stats[kv.first].c.oneK);
181       data.counters[kv.first] = c;
182     }
183 
184     results.push_back(data);
185   }
186 
187   return results;
188 }
189 
190 }  // end namespace benchmark
191