1 /*
2   This is a version (aka dlmalloc) of malloc/free/realloc written by
3   Doug Lea and released to the public domain, as explained at
4   http://creativecommons.org/licenses/publicdomain.  Send questions,
5   comments, complaints, performance data, etc to dl@cs.oswego.edu
6 
7 * Version 2.8.3 Thu Sep 22 11:16:15 2005  Doug Lea  (dl at gee)
8 
9    Note: There may be an updated version of this malloc obtainable at
10            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11          Check before installing!
12 
13 * Quickstart
14 
15   This library is all in one file to simplify the most common usage:
16   ftp it, compile it (-O3), and link it into another program. All of
17   the compile-time options default to reasonable values for use on
18   most platforms.  You might later want to step through various
19   compile-time and dynamic tuning options.
20 
21   For convenience, an include file for code using this malloc is at:
22      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23   You don't really need this .h file unless you call functions not
24   defined in your system include files.  The .h file contains only the
25   excerpts from this file needed for using this malloc on ANSI C/C++
26   systems, so long as you haven't changed compile-time options about
27   naming and tuning parameters.  If you do, then you can create your
28   own malloc.h that does include all settings by cutting at the point
29   indicated below. Note that you may already by default be using a C
30   library containing a malloc that is based on some version of this
31   malloc (for example in linux). You might still want to use the one
32   in this file to customize settings or to avoid overheads associated
33   with library versions.
34 
35 * Vital statistics:
36 
37   Supported pointer/size_t representation:       4 or 8 bytes
38        size_t MUST be an unsigned type of the same width as
39        pointers. (If you are using an ancient system that declares
40        size_t as a signed type, or need it to be a different width
41        than pointers, you can use a previous release of this malloc
42        (e.g. 2.7.2) supporting these.)
43 
44   Alignment:                                     8 bytes (default)
45        This suffices for nearly all current machines and C compilers.
46        However, you can define MALLOC_ALIGNMENT to be wider than this
47        if necessary (up to 128bytes), at the expense of using more space.
48 
49   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
50                                           8 or 16 bytes (if 8byte sizes)
51        Each malloced chunk has a hidden word of overhead holding size
52        and status information, and additional cross-check word
53        if FOOTERS is defined.
54 
55   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
56                           8-byte ptrs:  32 bytes    (including overhead)
57 
58        Even a request for zero bytes (i.e., malloc(0)) returns a
59        pointer to something of the minimum allocatable size.
60        The maximum overhead wastage (i.e., number of extra bytes
61        allocated than were requested in malloc) is less than or equal
62        to the minimum size, except for requests >= mmap_threshold that
63        are serviced via mmap(), where the worst case wastage is about
64        32 bytes plus the remainder from a system page (the minimal
65        mmap unit); typically 4096 or 8192 bytes.
66 
67   Security: static-safe; optionally more or less
68        The "security" of malloc refers to the ability of malicious
69        code to accentuate the effects of errors (for example, freeing
70        space that is not currently malloc'ed or overwriting past the
71        ends of chunks) in code that calls malloc.  This malloc
72        guarantees not to modify any memory locations below the base of
73        heap, i.e., static variables, even in the presence of usage
74        errors.  The routines additionally detect most improper frees
75        and reallocs.  All this holds as long as the static bookkeeping
76        for malloc itself is not corrupted by some other means.  This
77        is only one aspect of security -- these checks do not, and
78        cannot, detect all possible programming errors.
79 
80        If FOOTERS is defined nonzero, then each allocated chunk
81        carries an additional check word to verify that it was malloced
82        from its space.  These check words are the same within each
83        execution of a program using malloc, but differ across
84        executions, so externally crafted fake chunks cannot be
85        freed. This improves security by rejecting frees/reallocs that
86        could corrupt heap memory, in addition to the checks preventing
87        writes to statics that are always on.  This may further improve
88        security at the expense of time and space overhead.  (Note that
89        FOOTERS may also be worth using with MSPACES.)
90 
91        By default detected errors cause the program to abort (calling
92        "abort()"). You can override this to instead proceed past
93        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
94        has no effect, and a malloc that encounters a bad address
95        caused by user overwrites will ignore the bad address by
96        dropping pointers and indices to all known memory. This may
97        be appropriate for programs that should continue if at all
98        possible in the face of programming errors, although they may
99        run out of memory because dropped memory is never reclaimed.
100 
101        If you don't like either of these options, you can define
102        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103        else. And if if you are sure that your program using malloc has
104        no errors or vulnerabilities, you can define INSECURE to 1,
105        which might (or might not) provide a small performance improvement.
106 
107   Thread-safety: NOT thread-safe unless USE_LOCKS defined
108        When USE_LOCKS is defined, each public call to malloc, free,
109        etc is surrounded with either a pthread mutex or a win32
110        spinlock (depending on WIN32). This is not especially fast, and
111        can be a major bottleneck.  It is designed only to provide
112        minimal protection in concurrent environments, and to provide a
113        basis for extensions.  If you are using malloc in a concurrent
114        program, consider instead using ptmalloc, which is derived from
115        a version of this malloc. (See http://www.malloc.de).
116 
117   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118        This malloc can use unix sbrk or any emulation (invoked using
119        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121        memory.  On most unix systems, it tends to work best if both
122        MORECORE and MMAP are enabled.  On Win32, it uses emulations
123        based on VirtualAlloc. It also uses common C library functions
124        like memset.
125 
126   Compliance: I believe it is compliant with the Single Unix Specification
127        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128        others as well.
129 
130 * Overview of algorithms
131 
132   This is not the fastest, most space-conserving, most portable, or
133   most tunable malloc ever written. However it is among the fastest
134   while also being among the most space-conserving, portable and
135   tunable.  Consistent balance across these factors results in a good
136   general-purpose allocator for malloc-intensive programs.
137 
138   In most ways, this malloc is a best-fit allocator. Generally, it
139   chooses the best-fitting existing chunk for a request, with ties
140   broken in approximately least-recently-used order. (This strategy
141   normally maintains low fragmentation.) However, for requests less
142   than 256bytes, it deviates from best-fit when there is not an
143   exactly fitting available chunk by preferring to use space adjacent
144   to that used for the previous small request, as well as by breaking
145   ties in approximately most-recently-used order. (These enhance
146   locality of series of small allocations.)  And for very large requests
147   (>= 256Kb by default), it relies on system memory mapping
148   facilities, if supported.  (This helps avoid carrying around and
149   possibly fragmenting memory used only for large chunks.)
150 
151   All operations (except malloc_stats and mallinfo) have execution
152   times that are bounded by a constant factor of the number of bits in
153   a size_t, not counting any clearing in calloc or copying in realloc,
154   or actions surrounding MORECORE and MMAP that have times
155   proportional to the number of non-contiguous regions returned by
156   system allocation routines, which is often just 1.
157 
158   The implementation is not very modular and seriously overuses
159   macros. Perhaps someday all C compilers will do as good a job
160   inlining modular code as can now be done by brute-force expansion,
161   but now, enough of them seem not to.
162 
163   Some compilers issue a lot of warnings about code that is
164   dead/unreachable only on some platforms, and also about intentional
165   uses of negation on unsigned types. All known cases of each can be
166   ignored.
167 
168   For a longer but out of date high-level description, see
169      http://gee.cs.oswego.edu/dl/html/malloc.html
170 
171 * MSPACES
172   If MSPACES is defined, then in addition to malloc, free, etc.,
173   this file also defines mspace_malloc, mspace_free, etc. These
174   are versions of malloc routines that take an "mspace" argument
175   obtained using create_mspace, to control all internal bookkeeping.
176   If ONLY_MSPACES is defined, only these versions are compiled.
177   So if you would like to use this allocator for only some allocations,
178   and your system malloc for others, you can compile with
179   ONLY_MSPACES and then do something like...
180     static mspace mymspace = create_mspace(0,0); // for example
181     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
182 
183   (Note: If you only need one instance of an mspace, you can instead
184   use "USE_DL_PREFIX" to relabel the global malloc.)
185 
186   You can similarly create thread-local allocators by storing
187   mspaces as thread-locals. For example:
188     static __thread mspace tlms = 0;
189     void*  tlmalloc(size_t bytes) {
190       if (tlms == 0) tlms = create_mspace(0, 0);
191       return mspace_malloc(tlms, bytes);
192     }
193     void  tlfree(void* mem) { mspace_free(tlms, mem); }
194 
195   Unless FOOTERS is defined, each mspace is completely independent.
196   You cannot allocate from one and free to another (although
197   conformance is only weakly checked, so usage errors are not always
198   caught). If FOOTERS is defined, then each chunk carries around a tag
199   indicating its originating mspace, and frees are directed to their
200   originating spaces.
201 
202  -------------------------  Compile-time options ---------------------------
203 
204 Be careful in setting #define values for numerical constants of type
205 size_t. On some systems, literal values are not automatically extended
206 to size_t precision unless they are explicitly casted.
207 
208 WIN32                    default: defined if _WIN32 defined
209   Defining WIN32 sets up defaults for MS environment and compilers.
210   Otherwise defaults are for unix.
211 
212 MALLOC_ALIGNMENT         default: (size_t)8
213   Controls the minimum alignment for malloc'ed chunks.  It must be a
214   power of two and at least 8, even on machines for which smaller
215   alignments would suffice. It may be defined as larger than this
216   though. Note however that code and data structures are optimized for
217   the case of 8-byte alignment.
218 
219 MSPACES                  default: 0 (false)
220   If true, compile in support for independent allocation spaces.
221   This is only supported if HAVE_MMAP is true.
222 
223 ONLY_MSPACES             default: 0 (false)
224   If true, only compile in mspace versions, not regular versions.
225 
226 USE_LOCKS                default: 0 (false)
227   Causes each call to each public routine to be surrounded with
228   pthread or WIN32 mutex lock/unlock. (If set true, this can be
229   overridden on a per-mspace basis for mspace versions.)
230 
231 FOOTERS                  default: 0
232   If true, provide extra checking and dispatching by placing
233   information in the footers of allocated chunks. This adds
234   space and time overhead.
235 
236 INSECURE                 default: 0
237   If true, omit checks for usage errors and heap space overwrites.
238 
239 USE_DL_PREFIX            default: NOT defined
240   Causes compiler to prefix all public routines with the string 'dl'.
241   This can be useful when you only want to use this malloc in one part
242   of a program, using your regular system malloc elsewhere.
243 
244 ABORT                    default: defined as abort()
245   Defines how to abort on failed checks.  On most systems, a failed
246   check cannot die with an "assert" or even print an informative
247   message, because the underlying print routines in turn call malloc,
248   which will fail again.  Generally, the best policy is to simply call
249   abort(). It's not very useful to do more than this because many
250   errors due to overwriting will show up as address faults (null, odd
251   addresses etc) rather than malloc-triggered checks, so will also
252   abort.  Also, most compilers know that abort() does not return, so
253   can better optimize code conditionally calling it.
254 
255 PROCEED_ON_ERROR           default: defined as 0 (false)
256   Controls whether detected bad addresses cause them to bypassed
257   rather than aborting. If set, detected bad arguments to free and
258   realloc are ignored. And all bookkeeping information is zeroed out
259   upon a detected overwrite of freed heap space, thus losing the
260   ability to ever return it from malloc again, but enabling the
261   application to proceed. If PROCEED_ON_ERROR is defined, the
262   static variable malloc_corruption_error_count is compiled in
263   and can be examined to see if errors have occurred. This option
264   generates slower code than the default abort policy.
265 
266 DEBUG                    default: NOT defined
267   The DEBUG setting is mainly intended for people trying to modify
268   this code or diagnose problems when porting to new platforms.
269   However, it may also be able to better isolate user errors than just
270   using runtime checks.  The assertions in the check routines spell
271   out in more detail the assumptions and invariants underlying the
272   algorithms.  The checking is fairly extensive, and will slow down
273   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274   set will attempt to check every non-mmapped allocated and free chunk
275   in the course of computing the summaries.
276 
277 ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
278   Debugging assertion failures can be nearly impossible if your
279   version of the assert macro causes malloc to be called, which will
280   lead to a cascade of further failures, blowing the runtime stack.
281   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282   which will usually make debugging easier.
283 
284 MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
285   The action to take before "return 0" when malloc fails to be able to
286   return memory because there is none available.
287 
288 HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
289   True if this system supports sbrk or an emulation of it.
290 
291 MORECORE                  default: sbrk
292   The name of the sbrk-style system routine to call to obtain more
293   memory.  See below for guidance on writing custom MORECORE
294   functions. The type of the argument to sbrk/MORECORE varies across
295   systems.  It cannot be size_t, because it supports negative
296   arguments, so it is normally the signed type of the same width as
297   size_t (sometimes declared as "intptr_t").  It doesn't much matter
298   though. Internally, we only call it with arguments less than half
299   the max value of a size_t, which should work across all reasonable
300   possibilities, although sometimes generating compiler warnings.  See
301   near the end of this file for guidelines for creating a custom
302   version of MORECORE.
303 
304 MORECORE_CONTIGUOUS       default: 1 (true)
305   If true, take advantage of fact that consecutive calls to MORECORE
306   with positive arguments always return contiguous increasing
307   addresses.  This is true of unix sbrk. It does not hurt too much to
308   set it true anyway, since malloc copes with non-contiguities.
309   Setting it false when definitely non-contiguous saves time
310   and possibly wasted space it would take to discover this though.
311 
312 MORECORE_CANNOT_TRIM      default: NOT defined
313   True if MORECORE cannot release space back to the system when given
314   negative arguments. This is generally necessary only if you are
315   using a hand-crafted MORECORE function that cannot handle negative
316   arguments.
317 
318 HAVE_MMAP                 default: 1 (true)
319   True if this system supports mmap or an emulation of it.  If so, and
320   HAVE_MORECORE is not true, MMAP is used for all system
321   allocation. If set and HAVE_MORECORE is true as well, MMAP is
322   primarily used to directly allocate very large blocks. It is also
323   used as a backup strategy in cases where MORECORE fails to provide
324   space from system. Note: A single call to MUNMAP is assumed to be
325   able to unmap memory that may have be allocated using multiple calls
326   to MMAP, so long as they are adjacent.
327 
328 HAVE_MREMAP               default: 1 on linux, else 0
329   If true realloc() uses mremap() to re-allocate large blocks and
330   extend or shrink allocation spaces.
331 
332 MMAP_CLEARS               default: 1 on unix
333   True if mmap clears memory so calloc doesn't need to. This is true
334   for standard unix mmap using /dev/zero.
335 
336 USE_BUILTIN_FFS            default: 0 (i.e., not used)
337   Causes malloc to use the builtin ffs() function to compute indices.
338   Some compilers may recognize and intrinsify ffs to be faster than the
339   supplied C version. Also, the case of x86 using gcc is special-cased
340   to an asm instruction, so is already as fast as it can be, and so
341   this setting has no effect. (On most x86s, the asm version is only
342   slightly faster than the C version.)
343 
344 malloc_getpagesize         default: derive from system includes, or 4096.
345   The system page size. To the extent possible, this malloc manages
346   memory from the system in page-size units.  This may be (and
347   usually is) a function rather than a constant. This is ignored
348   if WIN32, where page size is determined using getSystemInfo during
349   initialization.
350 
351 USE_DEV_RANDOM             default: 0 (i.e., not used)
352   Causes malloc to use /dev/random to initialize secure magic seed for
353   stamping footers. Otherwise, the current time is used.
354 
355 NO_MALLINFO                default: 0
356   If defined, don't compile "mallinfo". This can be a simple way
357   of dealing with mismatches between system declarations and
358   those in this file.
359 
360 MALLINFO_FIELD_TYPE        default: size_t
361   The type of the fields in the mallinfo struct. This was originally
362   defined as "int" in SVID etc, but is more usefully defined as
363   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
364 
365 REALLOC_ZERO_BYTES_FREES    default: not defined
366   This should be set if a call to realloc with zero bytes should
367   be the same as a call to free. Some people think it should. Otherwise,
368   since this malloc returns a unique pointer for malloc(0), so does
369   realloc(p, 0).
370 
371 LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372 LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
373 LACKS_STDLIB_H                default: NOT defined unless on WIN32
374   Define these if your system does not have these header files.
375   You might need to manually insert some of the declarations they provide.
376 
377 DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
378                                 system_info.dwAllocationGranularity in WIN32,
379                                 otherwise 64K.
380       Also settable using mallopt(M_GRANULARITY, x)
381   The unit for allocating and deallocating memory from the system.  On
382   most systems with contiguous MORECORE, there is no reason to
383   make this more than a page. However, systems with MMAP tend to
384   either require or encourage larger granularities.  You can increase
385   this value to prevent system allocation functions to be called so
386   often, especially if they are slow.  The value must be at least one
387   page and must be a power of two.  Setting to 0 causes initialization
388   to either page size or win32 region size.  (Note: In previous
389   versions of malloc, the equivalent of this option was called
390   "TOP_PAD")
391 
392 DEFAULT_TRIM_THRESHOLD    default: 2MB
393       Also settable using mallopt(M_TRIM_THRESHOLD, x)
394   The maximum amount of unused top-most memory to keep before
395   releasing via malloc_trim in free().  Automatic trimming is mainly
396   useful in long-lived programs using contiguous MORECORE.  Because
397   trimming via sbrk can be slow on some systems, and can sometimes be
398   wasteful (in cases where programs immediately afterward allocate
399   more large chunks) the value should be high enough so that your
400   overall system performance would improve by releasing this much
401   memory.  As a rough guide, you might set to a value close to the
402   average size of a process (program) running on your system.
403   Releasing this much memory would allow such a process to run in
404   memory.  Generally, it is worth tuning trim thresholds when a
405   program undergoes phases where several large chunks are allocated
406   and released in ways that can reuse each other's storage, perhaps
407   mixed with phases where there are no such chunks at all. The trim
408   value must be greater than page size to have any useful effect.  To
409   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410   some people use of mallocing a huge space and then freeing it at
411   program startup, in an attempt to reserve system memory, doesn't
412   have the intended effect under automatic trimming, since that memory
413   will immediately be returned to the system.
414 
415 DEFAULT_MMAP_THRESHOLD       default: 256K
416       Also settable using mallopt(M_MMAP_THRESHOLD, x)
417   The request size threshold for using MMAP to directly service a
418   request. Requests of at least this size that cannot be allocated
419   using already-existing space will be serviced via mmap.  (If enough
420   normal freed space already exists it is used instead.)  Using mmap
421   segregates relatively large chunks of memory so that they can be
422   individually obtained and released from the host system. A request
423   serviced through mmap is never reused by any other request (at least
424   not directly; the system may just so happen to remap successive
425   requests to the same locations).  Segregating space in this way has
426   the benefits that: Mmapped space can always be individually released
427   back to the system, which helps keep the system level memory demands
428   of a long-lived program low.  Also, mapped memory doesn't become
429   `locked' between other chunks, as can happen with normally allocated
430   chunks, which means that even trimming via malloc_trim would not
431   release them.  However, it has the disadvantage that the space
432   cannot be reclaimed, consolidated, and then used to service later
433   requests, as happens with normal chunks.  The advantages of mmap
434   nearly always outweigh disadvantages for "large" chunks, but the
435   value of "large" may vary across systems.  The default is an
436   empirically derived value that works well in most systems. You can
437   disable mmap by setting to MAX_SIZE_T.
438 
439 */
440 
441 #ifndef WIN32
442 #ifdef _WIN32
443 #define WIN32 1
444 #endif  /* _WIN32 */
445 #endif  /* WIN32 */
446 #ifdef WIN32
447 #define WIN32_LEAN_AND_MEAN
448 #include <windows.h>
449 #define HAVE_MMAP 1
450 #define HAVE_MORECORE 0
451 #define LACKS_UNISTD_H
452 #define LACKS_SYS_PARAM_H
453 #define LACKS_SYS_MMAN_H
454 #define LACKS_STRING_H
455 #define LACKS_STRINGS_H
456 #define LACKS_SYS_TYPES_H
457 #define LACKS_ERRNO_H
458 #define MALLOC_FAILURE_ACTION
459 #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
460 #endif  /* WIN32 */
461 
462 #ifdef __OS2__
463 #define INCL_DOS
464 #include <os2.h>
465 #define HAVE_MMAP 1
466 #define HAVE_MORECORE 0
467 #define LACKS_SYS_MMAN_H
468 #endif  /* __OS2__ */
469 
470 #if defined(DARWIN) || defined(_DARWIN)
471 /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
472 #ifndef HAVE_MORECORE
473 #define HAVE_MORECORE 0
474 #define HAVE_MMAP 1
475 #endif  /* HAVE_MORECORE */
476 #endif  /* DARWIN */
477 
478 #ifndef LACKS_SYS_TYPES_H
479 #include <sys/types.h>  /* For size_t */
480 #endif  /* LACKS_SYS_TYPES_H */
481 
482 /* The maximum possible size_t value has all bits set */
483 #define MAX_SIZE_T           (~(size_t)0)
484 
485 #ifndef ONLY_MSPACES
486 #define ONLY_MSPACES 0
487 #endif  /* ONLY_MSPACES */
488 #ifndef MSPACES
489 #if ONLY_MSPACES
490 #define MSPACES 1
491 #else   /* ONLY_MSPACES */
492 #define MSPACES 0
493 #endif  /* ONLY_MSPACES */
494 #endif  /* MSPACES */
495 #ifndef MALLOC_ALIGNMENT
496 #define MALLOC_ALIGNMENT ((size_t)8U)
497 #endif  /* MALLOC_ALIGNMENT */
498 #ifndef FOOTERS
499 #define FOOTERS 0
500 #endif  /* FOOTERS */
501 #ifndef ABORT
502 #define ABORT  abort()
503 #endif  /* ABORT */
504 #ifndef ABORT_ON_ASSERT_FAILURE
505 #define ABORT_ON_ASSERT_FAILURE 1
506 #endif  /* ABORT_ON_ASSERT_FAILURE */
507 #ifndef PROCEED_ON_ERROR
508 #define PROCEED_ON_ERROR 0
509 #endif  /* PROCEED_ON_ERROR */
510 #ifndef USE_LOCKS
511 #define USE_LOCKS 0
512 #endif  /* USE_LOCKS */
513 #ifndef INSECURE
514 #define INSECURE 0
515 #endif  /* INSECURE */
516 #ifndef HAVE_MMAP
517 #define HAVE_MMAP 1
518 #endif  /* HAVE_MMAP */
519 #ifndef MMAP_CLEARS
520 #define MMAP_CLEARS 1
521 #endif  /* MMAP_CLEARS */
522 #ifndef HAVE_MREMAP
523 #ifdef linux
524 #define HAVE_MREMAP 1
525 #else   /* linux */
526 #define HAVE_MREMAP 0
527 #endif  /* linux */
528 #endif  /* HAVE_MREMAP */
529 #ifndef MALLOC_FAILURE_ACTION
530 #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
531 #endif  /* MALLOC_FAILURE_ACTION */
532 #ifndef HAVE_MORECORE
533 #if ONLY_MSPACES
534 #define HAVE_MORECORE 0
535 #else   /* ONLY_MSPACES */
536 #define HAVE_MORECORE 1
537 #endif  /* ONLY_MSPACES */
538 #endif  /* HAVE_MORECORE */
539 #if !HAVE_MORECORE
540 #define MORECORE_CONTIGUOUS 0
541 #else   /* !HAVE_MORECORE */
542 #ifndef MORECORE
543 #define MORECORE sbrk
544 #endif  /* MORECORE */
545 #ifndef MORECORE_CONTIGUOUS
546 #define MORECORE_CONTIGUOUS 1
547 #endif  /* MORECORE_CONTIGUOUS */
548 #endif  /* HAVE_MORECORE */
549 #ifndef DEFAULT_GRANULARITY
550 #if MORECORE_CONTIGUOUS
551 #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
552 #else   /* MORECORE_CONTIGUOUS */
553 #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
554 #endif  /* MORECORE_CONTIGUOUS */
555 #endif  /* DEFAULT_GRANULARITY */
556 #ifndef DEFAULT_TRIM_THRESHOLD
557 #ifndef MORECORE_CANNOT_TRIM
558 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
559 #else   /* MORECORE_CANNOT_TRIM */
560 #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
561 #endif  /* MORECORE_CANNOT_TRIM */
562 #endif  /* DEFAULT_TRIM_THRESHOLD */
563 #ifndef DEFAULT_MMAP_THRESHOLD
564 #if HAVE_MMAP
565 #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
566 #else   /* HAVE_MMAP */
567 #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
568 #endif  /* HAVE_MMAP */
569 #endif  /* DEFAULT_MMAP_THRESHOLD */
570 #ifndef USE_BUILTIN_FFS
571 #define USE_BUILTIN_FFS 0
572 #endif  /* USE_BUILTIN_FFS */
573 #ifndef USE_DEV_RANDOM
574 #define USE_DEV_RANDOM 0
575 #endif  /* USE_DEV_RANDOM */
576 #ifndef NO_MALLINFO
577 #define NO_MALLINFO 0
578 #endif  /* NO_MALLINFO */
579 #ifndef MALLINFO_FIELD_TYPE
580 #define MALLINFO_FIELD_TYPE size_t
581 #endif  /* MALLINFO_FIELD_TYPE */
582 
583 /*
584   mallopt tuning options.  SVID/XPG defines four standard parameter
585   numbers for mallopt, normally defined in malloc.h.  None of these
586   are used in this malloc, so setting them has no effect. But this
587   malloc does support the following options.
588 */
589 
590 #define M_TRIM_THRESHOLD     (-1)
591 #define M_GRANULARITY        (-2)
592 #define M_MMAP_THRESHOLD     (-3)
593 
594 /* ------------------------ Mallinfo declarations ------------------------ */
595 
596 #if !NO_MALLINFO
597 /*
598   This version of malloc supports the standard SVID/XPG mallinfo
599   routine that returns a struct containing usage properties and
600   statistics. It should work on any system that has a
601   /usr/include/malloc.h defining struct mallinfo.  The main
602   declaration needed is the mallinfo struct that is returned (by-copy)
603   by mallinfo().  The malloinfo struct contains a bunch of fields that
604   are not even meaningful in this version of malloc.  These fields are
605   are instead filled by mallinfo() with other numbers that might be of
606   interest.
607 
608   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
609   /usr/include/malloc.h file that includes a declaration of struct
610   mallinfo.  If so, it is included; else a compliant version is
611   declared below.  These must be precisely the same for mallinfo() to
612   work.  The original SVID version of this struct, defined on most
613   systems with mallinfo, declares all fields as ints. But some others
614   define as unsigned long. If your system defines the fields using a
615   type of different width than listed here, you MUST #include your
616   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
617 */
618 
619 /* #define HAVE_USR_INCLUDE_MALLOC_H */
620 
621 #ifdef HAVE_USR_INCLUDE_MALLOC_H
622 #include "/usr/include/malloc.h"
623 #else /* HAVE_USR_INCLUDE_MALLOC_H */
624 
625 /* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */
626 #define _STRUCT_MALLINFO
627 
628 struct mallinfo {
629   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
630   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
631   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
632   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
633   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
634   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
635   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
636   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
637   MALLINFO_FIELD_TYPE fordblks; /* total free space */
638   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
639 };
640 
641 #endif /* HAVE_USR_INCLUDE_MALLOC_H */
642 #endif /* NO_MALLINFO */
643 
644 #ifdef __cplusplus
645 extern "C" {
646 #endif /* __cplusplus */
647 
648 #if !ONLY_MSPACES
649 
650 /* ------------------- Declarations of public routines ------------------- */
651 
652 #ifndef USE_DL_PREFIX
653 #define dlcalloc               calloc
654 #define dlfree                 free
655 #define dlmalloc               malloc
656 #define dlmemalign             memalign
657 #define dlrealloc              realloc
658 #define dlvalloc               valloc
659 #define dlpvalloc              pvalloc
660 #define dlmallinfo             mallinfo
661 #define dlmallopt              mallopt
662 #define dlmalloc_trim          malloc_trim
663 #define dlmalloc_stats         malloc_stats
664 #define dlmalloc_usable_size   malloc_usable_size
665 #define dlmalloc_footprint     malloc_footprint
666 #define dlmalloc_max_footprint malloc_max_footprint
667 #define dlindependent_calloc   independent_calloc
668 #define dlindependent_comalloc independent_comalloc
669 #endif /* USE_DL_PREFIX */
670 
671 
672 /*
673   malloc(size_t n)
674   Returns a pointer to a newly allocated chunk of at least n bytes, or
675   null if no space is available, in which case errno is set to ENOMEM
676   on ANSI C systems.
677 
678   If n is zero, malloc returns a minimum-sized chunk. (The minimum
679   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
680   systems.)  Note that size_t is an unsigned type, so calls with
681   arguments that would be negative if signed are interpreted as
682   requests for huge amounts of space, which will often fail. The
683   maximum supported value of n differs across systems, but is in all
684   cases less than the maximum representable value of a size_t.
685 */
686 void* dlmalloc(size_t);
687 
688 /*
689   free(void* p)
690   Releases the chunk of memory pointed to by p, that had been previously
691   allocated using malloc or a related routine such as realloc.
692   It has no effect if p is null. If p was not malloced or already
693   freed, free(p) will by default cause the current program to abort.
694 */
695 void  dlfree(void*);
696 
697 /*
698   calloc(size_t n_elements, size_t element_size);
699   Returns a pointer to n_elements * element_size bytes, with all locations
700   set to zero.
701 */
702 void* dlcalloc(size_t, size_t);
703 
704 /*
705   realloc(void* p, size_t n)
706   Returns a pointer to a chunk of size n that contains the same data
707   as does chunk p up to the minimum of (n, p's size) bytes, or null
708   if no space is available.
709 
710   The returned pointer may or may not be the same as p. The algorithm
711   prefers extending p in most cases when possible, otherwise it
712   employs the equivalent of a malloc-copy-free sequence.
713 
714   If p is null, realloc is equivalent to malloc.
715 
716   If space is not available, realloc returns null, errno is set (if on
717   ANSI) and p is NOT freed.
718 
719   if n is for fewer bytes than already held by p, the newly unused
720   space is lopped off and freed if possible.  realloc with a size
721   argument of zero (re)allocates a minimum-sized chunk.
722 
723   The old unix realloc convention of allowing the last-free'd chunk
724   to be used as an argument to realloc is not supported.
725 */
726 
727 void* dlrealloc(void*, size_t);
728 
729 /*
730   memalign(size_t alignment, size_t n);
731   Returns a pointer to a newly allocated chunk of n bytes, aligned
732   in accord with the alignment argument.
733 
734   The alignment argument should be a power of two. If the argument is
735   not a power of two, the nearest greater power is used.
736   8-byte alignment is guaranteed by normal malloc calls, so don't
737   bother calling memalign with an argument of 8 or less.
738 
739   Overreliance on memalign is a sure way to fragment space.
740 */
741 void* dlmemalign(size_t, size_t);
742 
743 /*
744   valloc(size_t n);
745   Equivalent to memalign(pagesize, n), where pagesize is the page
746   size of the system. If the pagesize is unknown, 4096 is used.
747 */
748 void* dlvalloc(size_t);
749 
750 /*
751   mallopt(int parameter_number, int parameter_value)
752   Sets tunable parameters The format is to provide a
753   (parameter-number, parameter-value) pair.  mallopt then sets the
754   corresponding parameter to the argument value if it can (i.e., so
755   long as the value is meaningful), and returns 1 if successful else
756   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
757   normally defined in malloc.h.  None of these are use in this malloc,
758   so setting them has no effect. But this malloc also supports other
759   options in mallopt. See below for details.  Briefly, supported
760   parameters are as follows (listed defaults are for "typical"
761   configurations).
762 
763   Symbol            param #  default    allowed param values
764   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (MAX_SIZE_T disables)
765   M_GRANULARITY        -2     page size   any power of 2 >= page size
766   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
767 */
768 int dlmallopt(int, int);
769 
770 /*
771   malloc_footprint();
772   Returns the number of bytes obtained from the system.  The total
773   number of bytes allocated by malloc, realloc etc., is less than this
774   value. Unlike mallinfo, this function returns only a precomputed
775   result, so can be called frequently to monitor memory consumption.
776   Even if locks are otherwise defined, this function does not use them,
777   so results might not be up to date.
778 */
779 size_t dlmalloc_footprint(void);
780 
781 /*
782   malloc_max_footprint();
783   Returns the maximum number of bytes obtained from the system. This
784   value will be greater than current footprint if deallocated space
785   has been reclaimed by the system. The peak number of bytes allocated
786   by malloc, realloc etc., is less than this value. Unlike mallinfo,
787   this function returns only a precomputed result, so can be called
788   frequently to monitor memory consumption.  Even if locks are
789   otherwise defined, this function does not use them, so results might
790   not be up to date.
791 */
792 size_t dlmalloc_max_footprint(void);
793 
794 #if !NO_MALLINFO
795 /*
796   mallinfo()
797   Returns (by copy) a struct containing various summary statistics:
798 
799   arena:     current total non-mmapped bytes allocated from system
800   ordblks:   the number of free chunks
801   smblks:    always zero.
802   hblks:     current number of mmapped regions
803   hblkhd:    total bytes held in mmapped regions
804   usmblks:   the maximum total allocated space. This will be greater
805                 than current total if trimming has occurred.
806   fsmblks:   always zero
807   uordblks:  current total allocated space (normal or mmapped)
808   fordblks:  total free space
809   keepcost:  the maximum number of bytes that could ideally be released
810                back to system via malloc_trim. ("ideally" means that
811                it ignores page restrictions etc.)
812 
813   Because these fields are ints, but internal bookkeeping may
814   be kept as longs, the reported values may wrap around zero and
815   thus be inaccurate.
816 */
817 struct mallinfo dlmallinfo(void);
818 #endif /* NO_MALLINFO */
819 
820 /*
821   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
822 
823   independent_calloc is similar to calloc, but instead of returning a
824   single cleared space, it returns an array of pointers to n_elements
825   independent elements that can hold contents of size elem_size, each
826   of which starts out cleared, and can be independently freed,
827   realloc'ed etc. The elements are guaranteed to be adjacently
828   allocated (this is not guaranteed to occur with multiple callocs or
829   mallocs), which may also improve cache locality in some
830   applications.
831 
832   The "chunks" argument is optional (i.e., may be null, which is
833   probably the most typical usage). If it is null, the returned array
834   is itself dynamically allocated and should also be freed when it is
835   no longer needed. Otherwise, the chunks array must be of at least
836   n_elements in length. It is filled in with the pointers to the
837   chunks.
838 
839   In either case, independent_calloc returns this pointer array, or
840   null if the allocation failed.  If n_elements is zero and "chunks"
841   is null, it returns a chunk representing an array with zero elements
842   (which should be freed if not wanted).
843 
844   Each element must be individually freed when it is no longer
845   needed. If you'd like to instead be able to free all at once, you
846   should instead use regular calloc and assign pointers into this
847   space to represent elements.  (In this case though, you cannot
848   independently free elements.)
849 
850   independent_calloc simplifies and speeds up implementations of many
851   kinds of pools.  It may also be useful when constructing large data
852   structures that initially have a fixed number of fixed-sized nodes,
853   but the number is not known at compile time, and some of the nodes
854   may later need to be freed. For example:
855 
856   struct Node { int item; struct Node* next; };
857 
858   struct Node* build_list() {
859     struct Node** pool;
860     int n = read_number_of_nodes_needed();
861     if (n <= 0) return 0;
862     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
863     if (pool == 0) die();
864     // organize into a linked list...
865     struct Node* first = pool[0];
866     for (i = 0; i < n-1; ++i)
867       pool[i]->next = pool[i+1];
868     free(pool);     // Can now free the array (or not, if it is needed later)
869     return first;
870   }
871 */
872 void** dlindependent_calloc(size_t, size_t, void**);
873 
874 /*
875   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
876 
877   independent_comalloc allocates, all at once, a set of n_elements
878   chunks with sizes indicated in the "sizes" array.    It returns
879   an array of pointers to these elements, each of which can be
880   independently freed, realloc'ed etc. The elements are guaranteed to
881   be adjacently allocated (this is not guaranteed to occur with
882   multiple callocs or mallocs), which may also improve cache locality
883   in some applications.
884 
885   The "chunks" argument is optional (i.e., may be null). If it is null
886   the returned array is itself dynamically allocated and should also
887   be freed when it is no longer needed. Otherwise, the chunks array
888   must be of at least n_elements in length. It is filled in with the
889   pointers to the chunks.
890 
891   In either case, independent_comalloc returns this pointer array, or
892   null if the allocation failed.  If n_elements is zero and chunks is
893   null, it returns a chunk representing an array with zero elements
894   (which should be freed if not wanted).
895 
896   Each element must be individually freed when it is no longer
897   needed. If you'd like to instead be able to free all at once, you
898   should instead use a single regular malloc, and assign pointers at
899   particular offsets in the aggregate space. (In this case though, you
900   cannot independently free elements.)
901 
902   independent_comallac differs from independent_calloc in that each
903   element may have a different size, and also that it does not
904   automatically clear elements.
905 
906   independent_comalloc can be used to speed up allocation in cases
907   where several structs or objects must always be allocated at the
908   same time.  For example:
909 
910   struct Head { ... }
911   struct Foot { ... }
912 
913   void send_message(char* msg) {
914     int msglen = strlen(msg);
915     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
916     void* chunks[3];
917     if (independent_comalloc(3, sizes, chunks) == 0)
918       die();
919     struct Head* head = (struct Head*)(chunks[0]);
920     char*        body = (char*)(chunks[1]);
921     struct Foot* foot = (struct Foot*)(chunks[2]);
922     // ...
923   }
924 
925   In general though, independent_comalloc is worth using only for
926   larger values of n_elements. For small values, you probably won't
927   detect enough difference from series of malloc calls to bother.
928 
929   Overuse of independent_comalloc can increase overall memory usage,
930   since it cannot reuse existing noncontiguous small chunks that
931   might be available for some of the elements.
932 */
933 void** dlindependent_comalloc(size_t, size_t*, void**);
934 
935 
936 /*
937   pvalloc(size_t n);
938   Equivalent to valloc(minimum-page-that-holds(n)), that is,
939   round up n to nearest pagesize.
940  */
941 void*  dlpvalloc(size_t);
942 
943 /*
944   malloc_trim(size_t pad);
945 
946   If possible, gives memory back to the system (via negative arguments
947   to sbrk) if there is unused memory at the `high' end of the malloc
948   pool or in unused MMAP segments. You can call this after freeing
949   large blocks of memory to potentially reduce the system-level memory
950   requirements of a program. However, it cannot guarantee to reduce
951   memory. Under some allocation patterns, some large free blocks of
952   memory will be locked between two used chunks, so they cannot be
953   given back to the system.
954 
955   The `pad' argument to malloc_trim represents the amount of free
956   trailing space to leave untrimmed. If this argument is zero, only
957   the minimum amount of memory to maintain internal data structures
958   will be left. Non-zero arguments can be supplied to maintain enough
959   trailing space to service future expected allocations without having
960   to re-obtain memory from the system.
961 
962   Malloc_trim returns 1 if it actually released any memory, else 0.
963 */
964 int  dlmalloc_trim(size_t);
965 
966 /*
967   malloc_usable_size(void* p);
968 
969   Returns the number of bytes you can actually use in
970   an allocated chunk, which may be more than you requested (although
971   often not) due to alignment and minimum size constraints.
972   You can use this many bytes without worrying about
973   overwriting other allocated objects. This is not a particularly great
974   programming practice. malloc_usable_size can be more useful in
975   debugging and assertions, for example:
976 
977   p = malloc(n);
978   assert(malloc_usable_size(p) >= 256);
979 */
980 size_t dlmalloc_usable_size(void*);
981 
982 /*
983   malloc_stats();
984   Prints on stderr the amount of space obtained from the system (both
985   via sbrk and mmap), the maximum amount (which may be more than
986   current if malloc_trim and/or munmap got called), and the current
987   number of bytes allocated via malloc (or realloc, etc) but not yet
988   freed. Note that this is the number of bytes allocated, not the
989   number requested. It will be larger than the number requested
990   because of alignment and bookkeeping overhead. Because it includes
991   alignment wastage as being in use, this figure may be greater than
992   zero even when no user-level chunks are allocated.
993 
994   The reported current and maximum system memory can be inaccurate if
995   a program makes other calls to system memory allocation functions
996   (normally sbrk) outside of malloc.
997 
998   malloc_stats prints only the most commonly interesting statistics.
999   More information can be obtained by calling mallinfo.
1000 */
1001 void  dlmalloc_stats(void);
1002 
1003 #endif /* ONLY_MSPACES */
1004 
1005 #if MSPACES
1006 
1007 /*
1008   mspace is an opaque type representing an independent
1009   region of space that supports mspace_malloc, etc.
1010 */
1011 typedef void* mspace;
1012 
1013 /*
1014   create_mspace creates and returns a new independent space with the
1015   given initial capacity, or, if 0, the default granularity size.  It
1016   returns null if there is no system memory available to create the
1017   space.  If argument locked is non-zero, the space uses a separate
1018   lock to control access. The capacity of the space will grow
1019   dynamically as needed to service mspace_malloc requests.  You can
1020   control the sizes of incremental increases of this space by
1021   compiling with a different DEFAULT_GRANULARITY or dynamically
1022   setting with mallopt(M_GRANULARITY, value).
1023 */
1024 mspace create_mspace(size_t capacity, int locked);
1025 
1026 /*
1027   destroy_mspace destroys the given space, and attempts to return all
1028   of its memory back to the system, returning the total number of
1029   bytes freed. After destruction, the results of access to all memory
1030   used by the space become undefined.
1031 */
1032 size_t destroy_mspace(mspace msp);
1033 
1034 /*
1035   create_mspace_with_base uses the memory supplied as the initial base
1036   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1037   space is used for bookkeeping, so the capacity must be at least this
1038   large. (Otherwise 0 is returned.) When this initial space is
1039   exhausted, additional memory will be obtained from the system.
1040   Destroying this space will deallocate all additionally allocated
1041   space (if possible) but not the initial base.
1042 */
1043 mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1044 
1045 /*
1046   mspace_malloc behaves as malloc, but operates within
1047   the given space.
1048 */
1049 void* mspace_malloc(mspace msp, size_t bytes);
1050 
1051 /*
1052   mspace_free behaves as free, but operates within
1053   the given space.
1054 
1055   If compiled with FOOTERS==1, mspace_free is not actually needed.
1056   free may be called instead of mspace_free because freed chunks from
1057   any space are handled by their originating spaces.
1058 */
1059 void mspace_free(mspace msp, void* mem);
1060 
1061 /*
1062   mspace_realloc behaves as realloc, but operates within
1063   the given space.
1064 
1065   If compiled with FOOTERS==1, mspace_realloc is not actually
1066   needed.  realloc may be called instead of mspace_realloc because
1067   realloced chunks from any space are handled by their originating
1068   spaces.
1069 */
1070 void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1071 
1072 /*
1073   mspace_calloc behaves as calloc, but operates within
1074   the given space.
1075 */
1076 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1077 
1078 /*
1079   mspace_memalign behaves as memalign, but operates within
1080   the given space.
1081 */
1082 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1083 
1084 /*
1085   mspace_independent_calloc behaves as independent_calloc, but
1086   operates within the given space.
1087 */
1088 void** mspace_independent_calloc(mspace msp, size_t n_elements,
1089                                  size_t elem_size, void* chunks[]);
1090 
1091 /*
1092   mspace_independent_comalloc behaves as independent_comalloc, but
1093   operates within the given space.
1094 */
1095 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1096                                    size_t sizes[], void* chunks[]);
1097 
1098 /*
1099   mspace_footprint() returns the number of bytes obtained from the
1100   system for this space.
1101 */
1102 size_t mspace_footprint(mspace msp);
1103 
1104 /*
1105   mspace_max_footprint() returns the peak number of bytes obtained from the
1106   system for this space.
1107 */
1108 size_t mspace_max_footprint(mspace msp);
1109 
1110 
1111 #if !NO_MALLINFO
1112 /*
1113   mspace_mallinfo behaves as mallinfo, but reports properties of
1114   the given space.
1115 */
1116 struct mallinfo mspace_mallinfo(mspace msp);
1117 #endif /* NO_MALLINFO */
1118 
1119 /*
1120   mspace_malloc_stats behaves as malloc_stats, but reports
1121   properties of the given space.
1122 */
1123 void mspace_malloc_stats(mspace msp);
1124 
1125 /*
1126   mspace_trim behaves as malloc_trim, but
1127   operates within the given space.
1128 */
1129 int mspace_trim(mspace msp, size_t pad);
1130 
1131 /*
1132   An alias for mallopt.
1133 */
1134 int mspace_mallopt(int, int);
1135 
1136 #endif /* MSPACES */
1137 
1138 #ifdef __cplusplus
1139 };  /* end of extern "C" */
1140 #endif /* __cplusplus */
1141 
1142 /*
1143   ========================================================================
1144   To make a fully customizable malloc.h header file, cut everything
1145   above this line, put into file malloc.h, edit to suit, and #include it
1146   on the next line, as well as in programs that use this malloc.
1147   ========================================================================
1148 */
1149 
1150 /* #include "malloc.h" */
1151 
1152 /*------------------------------ internal #includes ---------------------- */
1153 
1154 #ifdef _MSC_VER
1155 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1156 #endif /* _MSC_VER */
1157 
1158 #include <stdio.h>       /* for printing in malloc_stats */
1159 
1160 #ifndef LACKS_ERRNO_H
1161 #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
1162 #endif /* LACKS_ERRNO_H */
1163 #if FOOTERS
1164 #include <time.h>        /* for magic initialization */
1165 #endif /* FOOTERS */
1166 #ifndef LACKS_STDLIB_H
1167 #include <stdlib.h>      /* for abort() */
1168 #endif /* LACKS_STDLIB_H */
1169 #ifdef DEBUG
1170 #if ABORT_ON_ASSERT_FAILURE
1171 #define assert(x) if(!(x)) ABORT
1172 #else /* ABORT_ON_ASSERT_FAILURE */
1173 #include <assert.h>
1174 #endif /* ABORT_ON_ASSERT_FAILURE */
1175 #else  /* DEBUG */
1176 #define assert(x)
1177 #endif /* DEBUG */
1178 #ifndef LACKS_STRING_H
1179 #include <string.h>      /* for memset etc */
1180 #endif  /* LACKS_STRING_H */
1181 #if USE_BUILTIN_FFS
1182 #ifndef LACKS_STRINGS_H
1183 #include <strings.h>     /* for ffs */
1184 #endif /* LACKS_STRINGS_H */
1185 #endif /* USE_BUILTIN_FFS */
1186 #if HAVE_MMAP
1187 #ifndef LACKS_SYS_MMAN_H
1188 #include <sys/mman.h>    /* for mmap */
1189 #endif /* LACKS_SYS_MMAN_H */
1190 #ifndef LACKS_FCNTL_H
1191 #include <fcntl.h>
1192 #endif /* LACKS_FCNTL_H */
1193 #endif /* HAVE_MMAP */
1194 #if HAVE_MORECORE
1195 #ifndef LACKS_UNISTD_H
1196 #include <unistd.h>     /* for sbrk */
1197 #else /* LACKS_UNISTD_H */
1198 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1199 extern void*     sbrk(ptrdiff_t);
1200 #endif /* FreeBSD etc */
1201 #endif /* LACKS_UNISTD_H */
1202 #endif /* HAVE_MMAP */
1203 
1204 #ifndef WIN32
1205 #ifndef malloc_getpagesize
1206 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
1207 #    ifndef _SC_PAGE_SIZE
1208 #      define _SC_PAGE_SIZE _SC_PAGESIZE
1209 #    endif
1210 #  endif
1211 #  ifdef _SC_PAGE_SIZE
1212 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1213 #  else
1214 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1215        extern size_t getpagesize();
1216 #      define malloc_getpagesize getpagesize()
1217 #    else
1218 #      ifdef WIN32 /* use supplied emulation of getpagesize */
1219 #        define malloc_getpagesize getpagesize()
1220 #      else
1221 #        ifndef LACKS_SYS_PARAM_H
1222 #          include <sys/param.h>
1223 #        endif
1224 #        ifdef EXEC_PAGESIZE
1225 #          define malloc_getpagesize EXEC_PAGESIZE
1226 #        else
1227 #          ifdef NBPG
1228 #            ifndef CLSIZE
1229 #              define malloc_getpagesize NBPG
1230 #            else
1231 #              define malloc_getpagesize (NBPG * CLSIZE)
1232 #            endif
1233 #          else
1234 #            ifdef NBPC
1235 #              define malloc_getpagesize NBPC
1236 #            else
1237 #              ifdef PAGESIZE
1238 #                define malloc_getpagesize PAGESIZE
1239 #              else /* just guess */
1240 #                define malloc_getpagesize ((size_t)4096U)
1241 #              endif
1242 #            endif
1243 #          endif
1244 #        endif
1245 #      endif
1246 #    endif
1247 #  endif
1248 #endif
1249 #endif
1250 
1251 /* ------------------- size_t and alignment properties -------------------- */
1252 
1253 /* The byte and bit size of a size_t */
1254 #define SIZE_T_SIZE         (sizeof(size_t))
1255 #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
1256 
1257 /* Some constants coerced to size_t */
1258 /* Annoying but necessary to avoid errors on some platforms */
1259 #define SIZE_T_ZERO         ((size_t)0)
1260 #define SIZE_T_ONE          ((size_t)1)
1261 #define SIZE_T_TWO          ((size_t)2)
1262 #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
1263 #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
1264 #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1265 #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
1266 
1267 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
1268 #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
1269 
1270 /* True if address a has acceptable alignment */
1271 #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1272 
1273 /* the number of bytes to offset an address to align it */
1274 #define align_offset(A)\
1275  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1276   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1277 
1278 /* -------------------------- MMAP preliminaries ------------------------- */
1279 
1280 /*
1281    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1282    checks to fail so compiler optimizer can delete code rather than
1283    using so many "#if"s.
1284 */
1285 
1286 
1287 /* MORECORE and MMAP must return MFAIL on failure */
1288 #define MFAIL                ((void*)(MAX_SIZE_T))
1289 #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
1290 
1291 #if !HAVE_MMAP
1292 #define IS_MMAPPED_BIT       (SIZE_T_ZERO)
1293 #define USE_MMAP_BIT         (SIZE_T_ZERO)
1294 #define CALL_MMAP(s)         MFAIL
1295 #define CALL_MUNMAP(a, s)    (-1)
1296 #define DIRECT_MMAP(s)       MFAIL
1297 
1298 #else /* HAVE_MMAP */
1299 #define IS_MMAPPED_BIT       (SIZE_T_ONE)
1300 #define USE_MMAP_BIT         (SIZE_T_ONE)
1301 
1302 #if !defined(WIN32) && !defined (__OS2__)
1303 #define CALL_MUNMAP(a, s)    munmap((a), (s))
1304 #define MMAP_PROT            (PROT_READ|PROT_WRITE)
1305 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1306 #define MAP_ANONYMOUS        MAP_ANON
1307 #endif /* MAP_ANON */
1308 #ifdef MAP_ANONYMOUS
1309 #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
1310 #define CALL_MMAP(s)         mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1311 #else /* MAP_ANONYMOUS */
1312 /*
1313    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1314    is unlikely to be needed, but is supplied just in case.
1315 */
1316 #define MMAP_FLAGS           (MAP_PRIVATE)
1317 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1318 #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
1319            (dev_zero_fd = open("/dev/zero", O_RDWR), \
1320             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1321             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1322 #endif /* MAP_ANONYMOUS */
1323 
1324 #define DIRECT_MMAP(s)       CALL_MMAP(s)
1325 
1326 #elif defined(__OS2__)
1327 
1328 /* OS/2 MMAP via DosAllocMem */
os2mmap(size_t size)1329 static void* os2mmap(size_t size) {
1330   void* ptr;
1331   if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) &&
1332       DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE))
1333     return MFAIL;
1334   return ptr;
1335 }
1336 
1337 #define os2direct_mmap(n)     os2mmap(n)
1338 
1339 /* This function supports releasing coalesed segments */
os2munmap(void * ptr,size_t size)1340 static int os2munmap(void* ptr, size_t size) {
1341   while (size) {
1342     ULONG ulSize = size;
1343     ULONG ulFlags = 0;
1344     if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0)
1345       return -1;
1346     if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 ||
1347         ulSize > size)
1348       return -1;
1349     if (DosFreeMem(ptr) != 0)
1350       return -1;
1351     ptr = ( void * ) ( ( char * ) ptr + ulSize );
1352     size -= ulSize;
1353   }
1354   return 0;
1355 }
1356 
1357 #define CALL_MMAP(s)         os2mmap(s)
1358 #define CALL_MUNMAP(a, s)    os2munmap((a), (s))
1359 #define DIRECT_MMAP(s)       os2direct_mmap(s)
1360 
1361 #else /* WIN32 */
1362 
1363 /* Win32 MMAP via VirtualAlloc */
win32mmap(size_t size)1364 static void* win32mmap(size_t size) {
1365   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);
1366   return (ptr != 0)? ptr: MFAIL;
1367 }
1368 
1369 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
win32direct_mmap(size_t size)1370 static void* win32direct_mmap(size_t size) {
1371   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1372                            PAGE_EXECUTE_READWRITE);
1373   return (ptr != 0)? ptr: MFAIL;
1374 }
1375 
1376 /* This function supports releasing coalesed segments */
win32munmap(void * ptr,size_t size)1377 static int win32munmap(void* ptr, size_t size) {
1378   MEMORY_BASIC_INFORMATION minfo;
1379   char* cptr = ptr;
1380   while (size) {
1381     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1382       return -1;
1383     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1384         minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1385       return -1;
1386     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1387       return -1;
1388     cptr += minfo.RegionSize;
1389     size -= minfo.RegionSize;
1390   }
1391   return 0;
1392 }
1393 
1394 #define CALL_MMAP(s)         win32mmap(s)
1395 #define CALL_MUNMAP(a, s)    win32munmap((a), (s))
1396 #define DIRECT_MMAP(s)       win32direct_mmap(s)
1397 #endif /* WIN32 */
1398 #endif /* HAVE_MMAP */
1399 
1400 #if HAVE_MMAP && HAVE_MREMAP
1401 #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1402 #else  /* HAVE_MMAP && HAVE_MREMAP */
1403 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1404 #endif /* HAVE_MMAP && HAVE_MREMAP */
1405 
1406 #if HAVE_MORECORE
1407 #define CALL_MORECORE(S)     MORECORE(S)
1408 #else  /* HAVE_MORECORE */
1409 #define CALL_MORECORE(S)     MFAIL
1410 #endif /* HAVE_MORECORE */
1411 
1412 /* mstate bit set if contiguous morecore disabled or failed */
1413 #define USE_NONCONTIGUOUS_BIT (4U)
1414 
1415 /* segment bit set in create_mspace_with_base */
1416 #define EXTERN_BIT            (8U)
1417 
1418 
1419 /* --------------------------- Lock preliminaries ------------------------ */
1420 
1421 #if USE_LOCKS
1422 
1423 /*
1424   When locks are defined, there are up to two global locks:
1425 
1426   * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
1427     MORECORE.  In many cases sys_alloc requires two calls, that should
1428     not be interleaved with calls by other threads.  This does not
1429     protect against direct calls to MORECORE by other threads not
1430     using this lock, so there is still code to cope the best we can on
1431     interference.
1432 
1433   * magic_init_mutex ensures that mparams.magic and other
1434     unique mparams values are initialized only once.
1435 */
1436 
1437 #if !defined(WIN32) && !defined(__OS2__)
1438 /* By default use posix locks */
1439 #include <pthread.h>
1440 #define MLOCK_T pthread_mutex_t
1441 #define INITIAL_LOCK(l)      pthread_mutex_init(l, NULL)
1442 #define ACQUIRE_LOCK(l)      pthread_mutex_lock(l)
1443 #define RELEASE_LOCK(l)      pthread_mutex_unlock(l)
1444 
1445 #if HAVE_MORECORE
1446 static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
1447 #endif /* HAVE_MORECORE */
1448 
1449 static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
1450 
1451 #elif defined(__OS2__)
1452 #define MLOCK_T HMTX
1453 #define INITIAL_LOCK(l)      DosCreateMutexSem(0, l, 0, FALSE)
1454 #define ACQUIRE_LOCK(l)      DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT)
1455 #define RELEASE_LOCK(l)      DosReleaseMutexSem(*l)
1456 #if HAVE_MORECORE
1457 static MLOCK_T morecore_mutex;
1458 #endif /* HAVE_MORECORE */
1459 static MLOCK_T magic_init_mutex;
1460 
1461 #else /* WIN32 */
1462 /*
1463    Because lock-protected regions have bounded times, and there
1464    are no recursive lock calls, we can use simple spinlocks.
1465 */
1466 
1467 #define MLOCK_T long
win32_acquire_lock(MLOCK_T * sl)1468 static int win32_acquire_lock (MLOCK_T *sl) {
1469   for (;;) {
1470 #ifdef InterlockedCompareExchangePointer
1471     if (!InterlockedCompareExchange(sl, 1, 0))
1472       return 0;
1473 #else  /* Use older void* version */
1474     if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
1475       return 0;
1476 #endif /* InterlockedCompareExchangePointer */
1477     Sleep (0);
1478   }
1479 }
1480 
win32_release_lock(MLOCK_T * sl)1481 static void win32_release_lock (MLOCK_T *sl) {
1482   InterlockedExchange (sl, 0);
1483 }
1484 
1485 #define INITIAL_LOCK(l)      *(l)=0
1486 #define ACQUIRE_LOCK(l)      win32_acquire_lock(l)
1487 #define RELEASE_LOCK(l)      win32_release_lock(l)
1488 #if HAVE_MORECORE
1489 static MLOCK_T morecore_mutex;
1490 #endif /* HAVE_MORECORE */
1491 static MLOCK_T magic_init_mutex;
1492 #endif /* WIN32 */
1493 
1494 #define USE_LOCK_BIT               (2U)
1495 #else  /* USE_LOCKS */
1496 #define USE_LOCK_BIT               (0U)
1497 #define INITIAL_LOCK(l)
1498 #endif /* USE_LOCKS */
1499 
1500 #if USE_LOCKS && HAVE_MORECORE
1501 #define ACQUIRE_MORECORE_LOCK()    ACQUIRE_LOCK(&morecore_mutex);
1502 #define RELEASE_MORECORE_LOCK()    RELEASE_LOCK(&morecore_mutex);
1503 #else /* USE_LOCKS && HAVE_MORECORE */
1504 #define ACQUIRE_MORECORE_LOCK()
1505 #define RELEASE_MORECORE_LOCK()
1506 #endif /* USE_LOCKS && HAVE_MORECORE */
1507 
1508 #if USE_LOCKS
1509 #define ACQUIRE_MAGIC_INIT_LOCK()  ACQUIRE_LOCK(&magic_init_mutex);
1510 #define RELEASE_MAGIC_INIT_LOCK()  RELEASE_LOCK(&magic_init_mutex);
1511 #else  /* USE_LOCKS */
1512 #define ACQUIRE_MAGIC_INIT_LOCK()
1513 #define RELEASE_MAGIC_INIT_LOCK()
1514 #endif /* USE_LOCKS */
1515 
1516 
1517 /* -----------------------  Chunk representations ------------------------ */
1518 
1519 /*
1520   (The following includes lightly edited explanations by Colin Plumb.)
1521 
1522   The malloc_chunk declaration below is misleading (but accurate and
1523   necessary).  It declares a "view" into memory allowing access to
1524   necessary fields at known offsets from a given base.
1525 
1526   Chunks of memory are maintained using a `boundary tag' method as
1527   originally described by Knuth.  (See the paper by Paul Wilson
1528   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1529   techniques.)  Sizes of free chunks are stored both in the front of
1530   each chunk and at the end.  This makes consolidating fragmented
1531   chunks into bigger chunks fast.  The head fields also hold bits
1532   representing whether chunks are free or in use.
1533 
1534   Here are some pictures to make it clearer.  They are "exploded" to
1535   show that the state of a chunk can be thought of as extending from
1536   the high 31 bits of the head field of its header through the
1537   prev_foot and PINUSE_BIT bit of the following chunk header.
1538 
1539   A chunk that's in use looks like:
1540 
1541    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1542            | Size of previous chunk (if P = 1)                             |
1543            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1544          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1545          | Size of this chunk                                         1| +-+
1546    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1547          |                                                               |
1548          +-                                                             -+
1549          |                                                               |
1550          +-                                                             -+
1551          |                                                               :
1552          +-      size - sizeof(size_t) available payload bytes          -+
1553          :                                                               |
1554  chunk-> +-                                                             -+
1555          |                                                               |
1556          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1557        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
1558        | Size of next chunk (may or may not be in use)               | +-+
1559  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1560 
1561     And if it's free, it looks like this:
1562 
1563    chunk-> +-                                                             -+
1564            | User payload (must be in use, or we would have merged!)       |
1565            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1566          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1567          | Size of this chunk                                         0| +-+
1568    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1569          | Next pointer                                                  |
1570          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1571          | Prev pointer                                                  |
1572          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1573          |                                                               :
1574          +-      size - sizeof(struct chunk) unused bytes               -+
1575          :                                                               |
1576  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1577          | Size of this chunk                                            |
1578          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1579        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
1580        | Size of next chunk (must be in use, or we would have merged)| +-+
1581  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1582        |                                                               :
1583        +- User payload                                                -+
1584        :                                                               |
1585        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1586                                                                      |0|
1587                                                                      +-+
1588   Note that since we always merge adjacent free chunks, the chunks
1589   adjacent to a free chunk must be in use.
1590 
1591   Given a pointer to a chunk (which can be derived trivially from the
1592   payload pointer) we can, in O(1) time, find out whether the adjacent
1593   chunks are free, and if so, unlink them from the lists that they
1594   are on and merge them with the current chunk.
1595 
1596   Chunks always begin on even word boundaries, so the mem portion
1597   (which is returned to the user) is also on an even word boundary, and
1598   thus at least double-word aligned.
1599 
1600   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1601   chunk size (which is always a multiple of two words), is an in-use
1602   bit for the *previous* chunk.  If that bit is *clear*, then the
1603   word before the current chunk size contains the previous chunk
1604   size, and can be used to find the front of the previous chunk.
1605   The very first chunk allocated always has this bit set, preventing
1606   access to non-existent (or non-owned) memory. If pinuse is set for
1607   any given chunk, then you CANNOT determine the size of the
1608   previous chunk, and might even get a memory addressing fault when
1609   trying to do so.
1610 
1611   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1612   the chunk size redundantly records whether the current chunk is
1613   inuse. This redundancy enables usage checks within free and realloc,
1614   and reduces indirection when freeing and consolidating chunks.
1615 
1616   Each freshly allocated chunk must have both cinuse and pinuse set.
1617   That is, each allocated chunk borders either a previously allocated
1618   and still in-use chunk, or the base of its memory arena. This is
1619   ensured by making all allocations from the the `lowest' part of any
1620   found chunk.  Further, no free chunk physically borders another one,
1621   so each free chunk is known to be preceded and followed by either
1622   inuse chunks or the ends of memory.
1623 
1624   Note that the `foot' of the current chunk is actually represented
1625   as the prev_foot of the NEXT chunk. This makes it easier to
1626   deal with alignments etc but can be very confusing when trying
1627   to extend or adapt this code.
1628 
1629   The exceptions to all this are
1630 
1631      1. The special chunk `top' is the top-most available chunk (i.e.,
1632         the one bordering the end of available memory). It is treated
1633         specially.  Top is never included in any bin, is used only if
1634         no other chunk is available, and is released back to the
1635         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
1636         the top chunk is treated as larger (and thus less well
1637         fitting) than any other available chunk.  The top chunk
1638         doesn't update its trailing size field since there is no next
1639         contiguous chunk that would have to index off it. However,
1640         space is still allocated for it (TOP_FOOT_SIZE) to enable
1641         separation or merging when space is extended.
1642 
1643      3. Chunks allocated via mmap, which have the lowest-order bit
1644         (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1645         PINUSE_BIT in their head fields.  Because they are allocated
1646         one-by-one, each must carry its own prev_foot field, which is
1647         also used to hold the offset this chunk has within its mmapped
1648         region, which is needed to preserve alignment. Each mmapped
1649         chunk is trailed by the first two fields of a fake next-chunk
1650         for sake of usage checks.
1651 
1652 */
1653 
1654 struct malloc_chunk {
1655   size_t               prev_foot;  /* Size of previous chunk (if free).  */
1656   size_t               head;       /* Size and inuse bits. */
1657   struct malloc_chunk* fd;         /* double links -- used only if free. */
1658   struct malloc_chunk* bk;
1659 };
1660 
1661 typedef struct malloc_chunk  mchunk;
1662 typedef struct malloc_chunk* mchunkptr;
1663 typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
1664 typedef size_t bindex_t;               /* Described below */
1665 typedef unsigned int binmap_t;         /* Described below */
1666 typedef unsigned int flag_t;           /* The type of various bit flag sets */
1667 
1668 /* ------------------- Chunks sizes and alignments ----------------------- */
1669 
1670 #define MCHUNK_SIZE         (sizeof(mchunk))
1671 
1672 #if FOOTERS
1673 #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
1674 #else /* FOOTERS */
1675 #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
1676 #endif /* FOOTERS */
1677 
1678 /* MMapped chunks need a second word of overhead ... */
1679 #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1680 /* ... and additional padding for fake next-chunk at foot */
1681 #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
1682 
1683 /* The smallest size we can malloc is an aligned minimal chunk */
1684 #define MIN_CHUNK_SIZE\
1685   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1686 
1687 /* conversion from malloc headers to user pointers, and back */
1688 #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
1689 #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1690 /* chunk associated with aligned address A */
1691 #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
1692 
1693 /* Bounds on request (not chunk) sizes. */
1694 #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
1695 #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1696 
1697 /* pad request bytes into a usable size */
1698 #define pad_request(req) \
1699    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1700 
1701 /* pad request, checking for minimum (but not maximum) */
1702 #define request2size(req) \
1703   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1704 
1705 
1706 /* ------------------ Operations on head and foot fields ----------------- */
1707 
1708 /*
1709   The head field of a chunk is or'ed with PINUSE_BIT when previous
1710   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1711   use. If the chunk was obtained with mmap, the prev_foot field has
1712   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1713   mmapped region to the base of the chunk.
1714 */
1715 
1716 #define PINUSE_BIT          (SIZE_T_ONE)
1717 #define CINUSE_BIT          (SIZE_T_TWO)
1718 #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
1719 
1720 /* Head value for fenceposts */
1721 #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
1722 
1723 /* extraction of fields from head words */
1724 #define cinuse(p)           ((p)->head & CINUSE_BIT)
1725 #define pinuse(p)           ((p)->head & PINUSE_BIT)
1726 #define chunksize(p)        ((p)->head & ~(INUSE_BITS))
1727 
1728 #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
1729 #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
1730 
1731 /* Treat space at ptr +/- offset as a chunk */
1732 #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1733 #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1734 
1735 /* Ptr to next or previous physical malloc_chunk. */
1736 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1737 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1738 
1739 /* extract next chunk's pinuse bit */
1740 #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
1741 
1742 /* Get/set size at footer */
1743 #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1744 #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1745 
1746 /* Set size, pinuse bit, and foot */
1747 #define set_size_and_pinuse_of_free_chunk(p, s)\
1748   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1749 
1750 /* Set size, pinuse bit, foot, and clear next pinuse */
1751 #define set_free_with_pinuse(p, s, n)\
1752   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1753 
1754 #define is_mmapped(p)\
1755   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1756 
1757 /* Get the internal overhead associated with chunk p */
1758 #define overhead_for(p)\
1759  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1760 
1761 /* Return true if malloced space is not necessarily cleared */
1762 #if MMAP_CLEARS
1763 #define calloc_must_clear(p) (!is_mmapped(p))
1764 #else /* MMAP_CLEARS */
1765 #define calloc_must_clear(p) (1)
1766 #endif /* MMAP_CLEARS */
1767 
1768 /* ---------------------- Overlaid data structures ----------------------- */
1769 
1770 /*
1771   When chunks are not in use, they are treated as nodes of either
1772   lists or trees.
1773 
1774   "Small"  chunks are stored in circular doubly-linked lists, and look
1775   like this:
1776 
1777     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1778             |             Size of previous chunk                            |
1779             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1780     `head:' |             Size of chunk, in bytes                         |P|
1781       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1782             |             Forward pointer to next chunk in list             |
1783             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1784             |             Back pointer to previous chunk in list            |
1785             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1786             |             Unused space (may be 0 bytes long)                .
1787             .                                                               .
1788             .                                                               |
1789 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1790     `foot:' |             Size of chunk, in bytes                           |
1791             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1792 
1793   Larger chunks are kept in a form of bitwise digital trees (aka
1794   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
1795   free chunks greater than 256 bytes, their size doesn't impose any
1796   constraints on user chunk sizes.  Each node looks like:
1797 
1798     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1799             |             Size of previous chunk                            |
1800             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1801     `head:' |             Size of chunk, in bytes                         |P|
1802       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1803             |             Forward pointer to next chunk of same size        |
1804             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1805             |             Back pointer to previous chunk of same size       |
1806             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1807             |             Pointer to left child (child[0])                  |
1808             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1809             |             Pointer to right child (child[1])                 |
1810             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1811             |             Pointer to parent                                 |
1812             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1813             |             bin index of this chunk                           |
1814             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1815             |             Unused space                                      .
1816             .                                                               |
1817 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1818     `foot:' |             Size of chunk, in bytes                           |
1819             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1820 
1821   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
1822   of the same size are arranged in a circularly-linked list, with only
1823   the oldest chunk (the next to be used, in our FIFO ordering)
1824   actually in the tree.  (Tree members are distinguished by a non-null
1825   parent pointer.)  If a chunk with the same size an an existing node
1826   is inserted, it is linked off the existing node using pointers that
1827   work in the same way as fd/bk pointers of small chunks.
1828 
1829   Each tree contains a power of 2 sized range of chunk sizes (the
1830   smallest is 0x100 <= x < 0x180), which is is divided in half at each
1831   tree level, with the chunks in the smaller half of the range (0x100
1832   <= x < 0x140 for the top nose) in the left subtree and the larger
1833   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
1834   done by inspecting individual bits.
1835 
1836   Using these rules, each node's left subtree contains all smaller
1837   sizes than its right subtree.  However, the node at the root of each
1838   subtree has no particular ordering relationship to either.  (The
1839   dividing line between the subtree sizes is based on trie relation.)
1840   If we remove the last chunk of a given size from the interior of the
1841   tree, we need to replace it with a leaf node.  The tree ordering
1842   rules permit a node to be replaced by any leaf below it.
1843 
1844   The smallest chunk in a tree (a common operation in a best-fit
1845   allocator) can be found by walking a path to the leftmost leaf in
1846   the tree.  Unlike a usual binary tree, where we follow left child
1847   pointers until we reach a null, here we follow the right child
1848   pointer any time the left one is null, until we reach a leaf with
1849   both child pointers null. The smallest chunk in the tree will be
1850   somewhere along that path.
1851 
1852   The worst case number of steps to add, find, or remove a node is
1853   bounded by the number of bits differentiating chunks within
1854   bins. Under current bin calculations, this ranges from 6 up to 21
1855   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1856   is of course much better.
1857 */
1858 
1859 struct malloc_tree_chunk {
1860   /* The first four fields must be compatible with malloc_chunk */
1861   size_t                    prev_foot;
1862   size_t                    head;
1863   struct malloc_tree_chunk* fd;
1864   struct malloc_tree_chunk* bk;
1865 
1866   struct malloc_tree_chunk* child[2];
1867   struct malloc_tree_chunk* parent;
1868   bindex_t                  index;
1869 };
1870 
1871 typedef struct malloc_tree_chunk  tchunk;
1872 typedef struct malloc_tree_chunk* tchunkptr;
1873 typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1874 
1875 /* A little helper macro for trees */
1876 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1877 
1878 /* ----------------------------- Segments -------------------------------- */
1879 
1880 /*
1881   Each malloc space may include non-contiguous segments, held in a
1882   list headed by an embedded malloc_segment record representing the
1883   top-most space. Segments also include flags holding properties of
1884   the space. Large chunks that are directly allocated by mmap are not
1885   included in this list. They are instead independently created and
1886   destroyed without otherwise keeping track of them.
1887 
1888   Segment management mainly comes into play for spaces allocated by
1889   MMAP.  Any call to MMAP might or might not return memory that is
1890   adjacent to an existing segment.  MORECORE normally contiguously
1891   extends the current space, so this space is almost always adjacent,
1892   which is simpler and faster to deal with. (This is why MORECORE is
1893   used preferentially to MMAP when both are available -- see
1894   sys_alloc.)  When allocating using MMAP, we don't use any of the
1895   hinting mechanisms (inconsistently) supported in various
1896   implementations of unix mmap, or distinguish reserving from
1897   committing memory. Instead, we just ask for space, and exploit
1898   contiguity when we get it.  It is probably possible to do
1899   better than this on some systems, but no general scheme seems
1900   to be significantly better.
1901 
1902   Management entails a simpler variant of the consolidation scheme
1903   used for chunks to reduce fragmentation -- new adjacent memory is
1904   normally prepended or appended to an existing segment. However,
1905   there are limitations compared to chunk consolidation that mostly
1906   reflect the fact that segment processing is relatively infrequent
1907   (occurring only when getting memory from system) and that we
1908   don't expect to have huge numbers of segments:
1909 
1910   * Segments are not indexed, so traversal requires linear scans.  (It
1911     would be possible to index these, but is not worth the extra
1912     overhead and complexity for most programs on most platforms.)
1913   * New segments are only appended to old ones when holding top-most
1914     memory; if they cannot be prepended to others, they are held in
1915     different segments.
1916 
1917   Except for the top-most segment of an mstate, each segment record
1918   is kept at the tail of its segment. Segments are added by pushing
1919   segment records onto the list headed by &mstate.seg for the
1920   containing mstate.
1921 
1922   Segment flags control allocation/merge/deallocation policies:
1923   * If EXTERN_BIT set, then we did not allocate this segment,
1924     and so should not try to deallocate or merge with others.
1925     (This currently holds only for the initial segment passed
1926     into create_mspace_with_base.)
1927   * If IS_MMAPPED_BIT set, the segment may be merged with
1928     other surrounding mmapped segments and trimmed/de-allocated
1929     using munmap.
1930   * If neither bit is set, then the segment was obtained using
1931     MORECORE so can be merged with surrounding MORECORE'd segments
1932     and deallocated/trimmed using MORECORE with negative arguments.
1933 */
1934 
1935 struct malloc_segment {
1936   char*        base;             /* base address */
1937   size_t       size;             /* allocated size */
1938   struct malloc_segment* next;   /* ptr to next segment */
1939 #if FFI_MMAP_EXEC_WRIT
1940   /* The mmap magic is supposed to store the address of the executable
1941      segment at the very end of the requested block.  */
1942 
1943 # define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t)))
1944 
1945   /* We can only merge segments if their corresponding executable
1946      segments are at identical offsets.  */
1947 # define check_segment_merge(S,b,s) \
1948   (mmap_exec_offset((b),(s)) == (S)->exec_offset)
1949 
1950 # define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset)
1951 # define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset)
1952 
1953   /* The removal of sflags only works with HAVE_MORECORE == 0.  */
1954 
1955 # define get_segment_flags(S)   (IS_MMAPPED_BIT)
1956 # define set_segment_flags(S,v) \
1957   (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) :				\
1958    (((S)->exec_offset =							\
1959      mmap_exec_offset((S)->base, (S)->size)),				\
1960     (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) !=	\
1961      (S)->exec_offset) ? (ABORT, (v)) :					\
1962    (mmap_exec_offset((S)->base, (S)->size) = 0), (v)))
1963 
1964   /* We use an offset here, instead of a pointer, because then, when
1965      base changes, we don't have to modify this.  On architectures
1966      with segmented addresses, this might not work.  */
1967   ptrdiff_t    exec_offset;
1968 #else
1969 
1970 # define get_segment_flags(S)   ((S)->sflags)
1971 # define set_segment_flags(S,v) ((S)->sflags = (v))
1972 # define check_segment_merge(S,b,s) (1)
1973 
1974   flag_t       sflags;           /* mmap and extern flag */
1975 #endif
1976 };
1977 
1978 #define is_mmapped_segment(S)  (get_segment_flags(S) & IS_MMAPPED_BIT)
1979 #define is_extern_segment(S)   (get_segment_flags(S) & EXTERN_BIT)
1980 
1981 typedef struct malloc_segment  msegment;
1982 typedef struct malloc_segment* msegmentptr;
1983 
1984 /* ---------------------------- malloc_state ----------------------------- */
1985 
1986 /*
1987    A malloc_state holds all of the bookkeeping for a space.
1988    The main fields are:
1989 
1990   Top
1991     The topmost chunk of the currently active segment. Its size is
1992     cached in topsize.  The actual size of topmost space is
1993     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1994     fenceposts and segment records if necessary when getting more
1995     space from the system.  The size at which to autotrim top is
1996     cached from mparams in trim_check, except that it is disabled if
1997     an autotrim fails.
1998 
1999   Designated victim (dv)
2000     This is the preferred chunk for servicing small requests that
2001     don't have exact fits.  It is normally the chunk split off most
2002     recently to service another small request.  Its size is cached in
2003     dvsize. The link fields of this chunk are not maintained since it
2004     is not kept in a bin.
2005 
2006   SmallBins
2007     An array of bin headers for free chunks.  These bins hold chunks
2008     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2009     chunks of all the same size, spaced 8 bytes apart.  To simplify
2010     use in double-linked lists, each bin header acts as a malloc_chunk
2011     pointing to the real first node, if it exists (else pointing to
2012     itself).  This avoids special-casing for headers.  But to avoid
2013     waste, we allocate only the fd/bk pointers of bins, and then use
2014     repositioning tricks to treat these as the fields of a chunk.
2015 
2016   TreeBins
2017     Treebins are pointers to the roots of trees holding a range of
2018     sizes. There are 2 equally spaced treebins for each power of two
2019     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2020     larger.
2021 
2022   Bin maps
2023     There is one bit map for small bins ("smallmap") and one for
2024     treebins ("treemap).  Each bin sets its bit when non-empty, and
2025     clears the bit when empty.  Bit operations are then used to avoid
2026     bin-by-bin searching -- nearly all "search" is done without ever
2027     looking at bins that won't be selected.  The bit maps
2028     conservatively use 32 bits per map word, even if on 64bit system.
2029     For a good description of some of the bit-based techniques used
2030     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2031     supplement at http://hackersdelight.org/). Many of these are
2032     intended to reduce the branchiness of paths through malloc etc, as
2033     well as to reduce the number of memory locations read or written.
2034 
2035   Segments
2036     A list of segments headed by an embedded malloc_segment record
2037     representing the initial space.
2038 
2039   Address check support
2040     The least_addr field is the least address ever obtained from
2041     MORECORE or MMAP. Attempted frees and reallocs of any address less
2042     than this are trapped (unless INSECURE is defined).
2043 
2044   Magic tag
2045     A cross-check field that should always hold same value as mparams.magic.
2046 
2047   Flags
2048     Bits recording whether to use MMAP, locks, or contiguous MORECORE
2049 
2050   Statistics
2051     Each space keeps track of current and maximum system memory
2052     obtained via MORECORE or MMAP.
2053 
2054   Locking
2055     If USE_LOCKS is defined, the "mutex" lock is acquired and released
2056     around every public call using this mspace.
2057 */
2058 
2059 /* Bin types, widths and sizes */
2060 #define NSMALLBINS        (32U)
2061 #define NTREEBINS         (32U)
2062 #define SMALLBIN_SHIFT    (3U)
2063 #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
2064 #define TREEBIN_SHIFT     (8U)
2065 #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
2066 #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
2067 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2068 
2069 struct malloc_state {
2070   binmap_t   smallmap;
2071   binmap_t   treemap;
2072   size_t     dvsize;
2073   size_t     topsize;
2074   char*      least_addr;
2075   mchunkptr  dv;
2076   mchunkptr  top;
2077   size_t     trim_check;
2078   size_t     magic;
2079   mchunkptr  smallbins[(NSMALLBINS+1)*2];
2080   tbinptr    treebins[NTREEBINS];
2081   size_t     footprint;
2082   size_t     max_footprint;
2083   flag_t     mflags;
2084 #if USE_LOCKS
2085   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
2086 #endif /* USE_LOCKS */
2087   msegment   seg;
2088 };
2089 
2090 typedef struct malloc_state*    mstate;
2091 
2092 /* ------------- Global malloc_state and malloc_params ------------------- */
2093 
2094 /*
2095   malloc_params holds global properties, including those that can be
2096   dynamically set using mallopt. There is a single instance, mparams,
2097   initialized in init_mparams.
2098 */
2099 
2100 struct malloc_params {
2101   size_t magic;
2102   size_t page_size;
2103   size_t granularity;
2104   size_t mmap_threshold;
2105   size_t trim_threshold;
2106   flag_t default_mflags;
2107 };
2108 
2109 static struct malloc_params mparams;
2110 
2111 /* The global malloc_state used for all non-"mspace" calls */
2112 static struct malloc_state _gm_;
2113 #define gm                 (&_gm_)
2114 #define is_global(M)       ((M) == &_gm_)
2115 #define is_initialized(M)  ((M)->top != 0)
2116 
2117 /* -------------------------- system alloc setup ------------------------- */
2118 
2119 /* Operations on mflags */
2120 
2121 #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
2122 #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
2123 #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
2124 
2125 #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
2126 #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
2127 #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
2128 
2129 #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
2130 #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
2131 
2132 #define set_lock(M,L)\
2133  ((M)->mflags = (L)?\
2134   ((M)->mflags | USE_LOCK_BIT) :\
2135   ((M)->mflags & ~USE_LOCK_BIT))
2136 
2137 /* page-align a size */
2138 #define page_align(S)\
2139  (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
2140 
2141 /* granularity-align a size */
2142 #define granularity_align(S)\
2143   (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
2144 
2145 #define is_page_aligned(S)\
2146    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2147 #define is_granularity_aligned(S)\
2148    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2149 
2150 /*  True if segment S holds address A */
2151 #define segment_holds(S, A)\
2152   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2153 
2154 /* Return segment holding given address */
segment_holding(mstate m,char * addr)2155 static msegmentptr segment_holding(mstate m, char* addr) {
2156   msegmentptr sp = &m->seg;
2157   for (;;) {
2158     if (addr >= sp->base && addr < sp->base + sp->size)
2159       return sp;
2160     if ((sp = sp->next) == 0)
2161       return 0;
2162   }
2163 }
2164 
2165 /* Return true if segment contains a segment link */
has_segment_link(mstate m,msegmentptr ss)2166 static int has_segment_link(mstate m, msegmentptr ss) {
2167   msegmentptr sp = &m->seg;
2168   for (;;) {
2169     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2170       return 1;
2171     if ((sp = sp->next) == 0)
2172       return 0;
2173   }
2174 }
2175 
2176 #ifndef MORECORE_CANNOT_TRIM
2177 #define should_trim(M,s)  ((s) > (M)->trim_check)
2178 #else  /* MORECORE_CANNOT_TRIM */
2179 #define should_trim(M,s)  (0)
2180 #endif /* MORECORE_CANNOT_TRIM */
2181 
2182 /*
2183   TOP_FOOT_SIZE is padding at the end of a segment, including space
2184   that may be needed to place segment records and fenceposts when new
2185   noncontiguous segments are added.
2186 */
2187 #define TOP_FOOT_SIZE\
2188   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2189 
2190 
2191 /* -------------------------------  Hooks -------------------------------- */
2192 
2193 /*
2194   PREACTION should be defined to return 0 on success, and nonzero on
2195   failure. If you are not using locking, you can redefine these to do
2196   anything you like.
2197 */
2198 
2199 #if USE_LOCKS
2200 
2201 /* Ensure locks are initialized */
2202 #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
2203 
2204 #define PREACTION(M)  ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2205 #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2206 #else /* USE_LOCKS */
2207 
2208 #ifndef PREACTION
2209 #define PREACTION(M) (0)
2210 #endif  /* PREACTION */
2211 
2212 #ifndef POSTACTION
2213 #define POSTACTION(M)
2214 #endif  /* POSTACTION */
2215 
2216 #endif /* USE_LOCKS */
2217 
2218 /*
2219   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2220   USAGE_ERROR_ACTION is triggered on detected bad frees and
2221   reallocs. The argument p is an address that might have triggered the
2222   fault. It is ignored by the two predefined actions, but might be
2223   useful in custom actions that try to help diagnose errors.
2224 */
2225 
2226 #if PROCEED_ON_ERROR
2227 
2228 /* A count of the number of corruption errors causing resets */
2229 int malloc_corruption_error_count;
2230 
2231 /* default corruption action */
2232 static void reset_on_error(mstate m);
2233 
2234 #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
2235 #define USAGE_ERROR_ACTION(m, p)
2236 
2237 #else /* PROCEED_ON_ERROR */
2238 
2239 #ifndef CORRUPTION_ERROR_ACTION
2240 #define CORRUPTION_ERROR_ACTION(m) ABORT
2241 #endif /* CORRUPTION_ERROR_ACTION */
2242 
2243 #ifndef USAGE_ERROR_ACTION
2244 #define USAGE_ERROR_ACTION(m,p) ABORT
2245 #endif /* USAGE_ERROR_ACTION */
2246 
2247 #endif /* PROCEED_ON_ERROR */
2248 
2249 /* -------------------------- Debugging setup ---------------------------- */
2250 
2251 #if ! DEBUG
2252 
2253 #define check_free_chunk(M,P)
2254 #define check_inuse_chunk(M,P)
2255 #define check_malloced_chunk(M,P,N)
2256 #define check_mmapped_chunk(M,P)
2257 #define check_malloc_state(M)
2258 #define check_top_chunk(M,P)
2259 
2260 #else /* DEBUG */
2261 #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
2262 #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
2263 #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
2264 #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2265 #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
2266 #define check_malloc_state(M)       do_check_malloc_state(M)
2267 
2268 static void   do_check_any_chunk(mstate m, mchunkptr p);
2269 static void   do_check_top_chunk(mstate m, mchunkptr p);
2270 static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
2271 static void   do_check_inuse_chunk(mstate m, mchunkptr p);
2272 static void   do_check_free_chunk(mstate m, mchunkptr p);
2273 static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
2274 static void   do_check_tree(mstate m, tchunkptr t);
2275 static void   do_check_treebin(mstate m, bindex_t i);
2276 static void   do_check_smallbin(mstate m, bindex_t i);
2277 static void   do_check_malloc_state(mstate m);
2278 static int    bin_find(mstate m, mchunkptr x);
2279 static size_t traverse_and_check(mstate m);
2280 #endif /* DEBUG */
2281 
2282 /* ---------------------------- Indexing Bins ---------------------------- */
2283 
2284 #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2285 #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
2286 #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
2287 #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
2288 
2289 /* addressing by index. See above about smallbin repositioning */
2290 #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2291 #define treebin_at(M,i)     (&((M)->treebins[i]))
2292 
2293 /* assign tree index for size S to variable I */
2294 #if defined(__GNUC__) && defined(i386)
2295 #define compute_tree_index(S, I)\
2296 {\
2297   size_t X = S >> TREEBIN_SHIFT;\
2298   if (X == 0)\
2299     I = 0;\
2300   else if (X > 0xFFFF)\
2301     I = NTREEBINS-1;\
2302   else {\
2303     unsigned int K;\
2304     __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm"  (X));\
2305     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2306   }\
2307 }
2308 #else /* GNUC */
2309 #define compute_tree_index(S, I)\
2310 {\
2311   size_t X = S >> TREEBIN_SHIFT;\
2312   if (X == 0)\
2313     I = 0;\
2314   else if (X > 0xFFFF)\
2315     I = NTREEBINS-1;\
2316   else {\
2317     unsigned int Y = (unsigned int)X;\
2318     unsigned int N = ((Y - 0x100) >> 16) & 8;\
2319     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2320     N += K;\
2321     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2322     K = 14 - N + ((Y <<= K) >> 15);\
2323     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2324   }\
2325 }
2326 #endif /* GNUC */
2327 
2328 /* Bit representing maximum resolved size in a treebin at i */
2329 #define bit_for_tree_index(i) \
2330    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2331 
2332 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
2333 #define leftshift_for_tree_index(i) \
2334    ((i == NTREEBINS-1)? 0 : \
2335     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2336 
2337 /* The size of the smallest chunk held in bin with index i */
2338 #define minsize_for_tree_index(i) \
2339    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
2340    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2341 
2342 
2343 /* ------------------------ Operations on bin maps ----------------------- */
2344 
2345 /* bit corresponding to given index */
2346 #define idx2bit(i)              ((binmap_t)(1) << (i))
2347 
2348 /* Mark/Clear bits with given index */
2349 #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
2350 #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
2351 #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
2352 
2353 #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
2354 #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
2355 #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
2356 
2357 /* index corresponding to given bit */
2358 
2359 #if defined(__GNUC__) && defined(i386)
2360 #define compute_bit2idx(X, I)\
2361 {\
2362   unsigned int J;\
2363   __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
2364   I = (bindex_t)J;\
2365 }
2366 
2367 #else /* GNUC */
2368 #if  USE_BUILTIN_FFS
2369 #define compute_bit2idx(X, I) I = ffs(X)-1
2370 
2371 #else /* USE_BUILTIN_FFS */
2372 #define compute_bit2idx(X, I)\
2373 {\
2374   unsigned int Y = X - 1;\
2375   unsigned int K = Y >> (16-4) & 16;\
2376   unsigned int N = K;        Y >>= K;\
2377   N += K = Y >> (8-3) &  8;  Y >>= K;\
2378   N += K = Y >> (4-2) &  4;  Y >>= K;\
2379   N += K = Y >> (2-1) &  2;  Y >>= K;\
2380   N += K = Y >> (1-0) &  1;  Y >>= K;\
2381   I = (bindex_t)(N + Y);\
2382 }
2383 #endif /* USE_BUILTIN_FFS */
2384 #endif /* GNUC */
2385 
2386 /* isolate the least set bit of a bitmap */
2387 #define least_bit(x)         ((x) & -(x))
2388 
2389 /* mask with all bits to left of least bit of x on */
2390 #define left_bits(x)         ((x<<1) | -(x<<1))
2391 
2392 /* mask with all bits to left of or equal to least bit of x on */
2393 #define same_or_left_bits(x) ((x) | -(x))
2394 
2395 
2396 /* ----------------------- Runtime Check Support ------------------------- */
2397 
2398 /*
2399   For security, the main invariant is that malloc/free/etc never
2400   writes to a static address other than malloc_state, unless static
2401   malloc_state itself has been corrupted, which cannot occur via
2402   malloc (because of these checks). In essence this means that we
2403   believe all pointers, sizes, maps etc held in malloc_state, but
2404   check all of those linked or offsetted from other embedded data
2405   structures.  These checks are interspersed with main code in a way
2406   that tends to minimize their run-time cost.
2407 
2408   When FOOTERS is defined, in addition to range checking, we also
2409   verify footer fields of inuse chunks, which can be used guarantee
2410   that the mstate controlling malloc/free is intact.  This is a
2411   streamlined version of the approach described by William Robertson
2412   et al in "Run-time Detection of Heap-based Overflows" LISA'03
2413   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2414   of an inuse chunk holds the xor of its mstate and a random seed,
2415   that is checked upon calls to free() and realloc().  This is
2416   (probablistically) unguessable from outside the program, but can be
2417   computed by any code successfully malloc'ing any chunk, so does not
2418   itself provide protection against code that has already broken
2419   security through some other means.  Unlike Robertson et al, we
2420   always dynamically check addresses of all offset chunks (previous,
2421   next, etc). This turns out to be cheaper than relying on hashes.
2422 */
2423 
2424 #if !INSECURE
2425 /* Check if address a is at least as high as any from MORECORE or MMAP */
2426 #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2427 /* Check if address of next chunk n is higher than base chunk p */
2428 #define ok_next(p, n)    ((char*)(p) < (char*)(n))
2429 /* Check if p has its cinuse bit on */
2430 #define ok_cinuse(p)     cinuse(p)
2431 /* Check if p has its pinuse bit on */
2432 #define ok_pinuse(p)     pinuse(p)
2433 
2434 #else /* !INSECURE */
2435 #define ok_address(M, a) (1)
2436 #define ok_next(b, n)    (1)
2437 #define ok_cinuse(p)     (1)
2438 #define ok_pinuse(p)     (1)
2439 #endif /* !INSECURE */
2440 
2441 #if (FOOTERS && !INSECURE)
2442 /* Check if (alleged) mstate m has expected magic field */
2443 #define ok_magic(M)      ((M)->magic == mparams.magic)
2444 #else  /* (FOOTERS && !INSECURE) */
2445 #define ok_magic(M)      (1)
2446 #endif /* (FOOTERS && !INSECURE) */
2447 
2448 
2449 /* In gcc, use __builtin_expect to minimize impact of checks */
2450 #if !INSECURE
2451 #if defined(__GNUC__) && __GNUC__ >= 3
2452 #define RTCHECK(e)  __builtin_expect(e, 1)
2453 #else /* GNUC */
2454 #define RTCHECK(e)  (e)
2455 #endif /* GNUC */
2456 #else /* !INSECURE */
2457 #define RTCHECK(e)  (1)
2458 #endif /* !INSECURE */
2459 
2460 /* macros to set up inuse chunks with or without footers */
2461 
2462 #if !FOOTERS
2463 
2464 #define mark_inuse_foot(M,p,s)
2465 
2466 /* Set cinuse bit and pinuse bit of next chunk */
2467 #define set_inuse(M,p,s)\
2468   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2469   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2470 
2471 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2472 #define set_inuse_and_pinuse(M,p,s)\
2473   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2474   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2475 
2476 /* Set size, cinuse and pinuse bit of this chunk */
2477 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2478   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2479 
2480 #else /* FOOTERS */
2481 
2482 /* Set foot of inuse chunk to be xor of mstate and seed */
2483 #define mark_inuse_foot(M,p,s)\
2484   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2485 
2486 #define get_mstate_for(p)\
2487   ((mstate)(((mchunkptr)((char*)(p) +\
2488     (chunksize(p))))->prev_foot ^ mparams.magic))
2489 
2490 #define set_inuse(M,p,s)\
2491   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2492   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2493   mark_inuse_foot(M,p,s))
2494 
2495 #define set_inuse_and_pinuse(M,p,s)\
2496   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2497   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2498  mark_inuse_foot(M,p,s))
2499 
2500 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2501   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2502   mark_inuse_foot(M, p, s))
2503 
2504 #endif /* !FOOTERS */
2505 
2506 /* ---------------------------- setting mparams -------------------------- */
2507 
2508 /* Initialize mparams */
init_mparams(void)2509 static int init_mparams(void) {
2510   if (mparams.page_size == 0) {
2511     size_t s;
2512 
2513     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
2514     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
2515 #if MORECORE_CONTIGUOUS
2516     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
2517 #else  /* MORECORE_CONTIGUOUS */
2518     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
2519 #endif /* MORECORE_CONTIGUOUS */
2520 
2521 #if (FOOTERS && !INSECURE)
2522     {
2523 #if USE_DEV_RANDOM
2524       int fd;
2525       unsigned char buf[sizeof(size_t)];
2526       /* Try to use /dev/urandom, else fall back on using time */
2527       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
2528           read(fd, buf, sizeof(buf)) == sizeof(buf)) {
2529         s = *((size_t *) buf);
2530         close(fd);
2531       }
2532       else
2533 #endif /* USE_DEV_RANDOM */
2534         s = (size_t)(time(0) ^ (size_t)0x55555555U);
2535 
2536       s |= (size_t)8U;    /* ensure nonzero */
2537       s &= ~(size_t)7U;   /* improve chances of fault for bad values */
2538 
2539     }
2540 #else /* (FOOTERS && !INSECURE) */
2541     s = (size_t)0x58585858U;
2542 #endif /* (FOOTERS && !INSECURE) */
2543     ACQUIRE_MAGIC_INIT_LOCK();
2544     if (mparams.magic == 0) {
2545       mparams.magic = s;
2546       /* Set up lock for main malloc area */
2547       INITIAL_LOCK(&gm->mutex);
2548       gm->mflags = mparams.default_mflags;
2549     }
2550     RELEASE_MAGIC_INIT_LOCK();
2551 
2552 #if !defined(WIN32) && !defined(__OS2__)
2553     mparams.page_size = malloc_getpagesize;
2554     mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
2555                            DEFAULT_GRANULARITY : mparams.page_size);
2556 #elif defined (__OS2__)
2557  /* if low-memory is used, os2munmap() would break
2558     if it were anything other than 64k */
2559     mparams.page_size = 4096u;
2560     mparams.granularity = 65536u;
2561 #else /* WIN32 */
2562     {
2563       SYSTEM_INFO system_info;
2564       GetSystemInfo(&system_info);
2565       mparams.page_size = system_info.dwPageSize;
2566       mparams.granularity = system_info.dwAllocationGranularity;
2567     }
2568 #endif /* WIN32 */
2569 
2570     /* Sanity-check configuration:
2571        size_t must be unsigned and as wide as pointer type.
2572        ints must be at least 4 bytes.
2573        alignment must be at least 8.
2574        Alignment, min chunk size, and page size must all be powers of 2.
2575     */
2576     if ((sizeof(size_t) != sizeof(char*)) ||
2577         (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
2578         (sizeof(int) < 4)  ||
2579         (MALLOC_ALIGNMENT < (size_t)8U) ||
2580         ((MALLOC_ALIGNMENT    & (MALLOC_ALIGNMENT-SIZE_T_ONE))    != 0) ||
2581         ((MCHUNK_SIZE         & (MCHUNK_SIZE-SIZE_T_ONE))         != 0) ||
2582         ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
2583         ((mparams.page_size   & (mparams.page_size-SIZE_T_ONE))   != 0))
2584       ABORT;
2585   }
2586   return 0;
2587 }
2588 
2589 /* support for mallopt */
change_mparam(int param_number,int value)2590 static int change_mparam(int param_number, int value) {
2591   size_t val = (size_t)value;
2592   init_mparams();
2593   switch(param_number) {
2594   case M_TRIM_THRESHOLD:
2595     mparams.trim_threshold = val;
2596     return 1;
2597   case M_GRANULARITY:
2598     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
2599       mparams.granularity = val;
2600       return 1;
2601     }
2602     else
2603       return 0;
2604   case M_MMAP_THRESHOLD:
2605     mparams.mmap_threshold = val;
2606     return 1;
2607   default:
2608     return 0;
2609   }
2610 }
2611 
2612 #if DEBUG
2613 /* ------------------------- Debugging Support --------------------------- */
2614 
2615 /* Check properties of any chunk, whether free, inuse, mmapped etc  */
do_check_any_chunk(mstate m,mchunkptr p)2616 static void do_check_any_chunk(mstate m, mchunkptr p) {
2617   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2618   assert(ok_address(m, p));
2619 }
2620 
2621 /* Check properties of top chunk */
do_check_top_chunk(mstate m,mchunkptr p)2622 static void do_check_top_chunk(mstate m, mchunkptr p) {
2623   msegmentptr sp = segment_holding(m, (char*)p);
2624   size_t  sz = chunksize(p);
2625   assert(sp != 0);
2626   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2627   assert(ok_address(m, p));
2628   assert(sz == m->topsize);
2629   assert(sz > 0);
2630   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2631   assert(pinuse(p));
2632   assert(!next_pinuse(p));
2633 }
2634 
2635 /* Check properties of (inuse) mmapped chunks */
do_check_mmapped_chunk(mstate m,mchunkptr p)2636 static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2637   size_t  sz = chunksize(p);
2638   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2639   assert(is_mmapped(p));
2640   assert(use_mmap(m));
2641   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2642   assert(ok_address(m, p));
2643   assert(!is_small(sz));
2644   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2645   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2646   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2647 }
2648 
2649 /* Check properties of inuse chunks */
do_check_inuse_chunk(mstate m,mchunkptr p)2650 static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2651   do_check_any_chunk(m, p);
2652   assert(cinuse(p));
2653   assert(next_pinuse(p));
2654   /* If not pinuse and not mmapped, previous chunk has OK offset */
2655   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2656   if (is_mmapped(p))
2657     do_check_mmapped_chunk(m, p);
2658 }
2659 
2660 /* Check properties of free chunks */
do_check_free_chunk(mstate m,mchunkptr p)2661 static void do_check_free_chunk(mstate m, mchunkptr p) {
2662   size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2663   mchunkptr next = chunk_plus_offset(p, sz);
2664   do_check_any_chunk(m, p);
2665   assert(!cinuse(p));
2666   assert(!next_pinuse(p));
2667   assert (!is_mmapped(p));
2668   if (p != m->dv && p != m->top) {
2669     if (sz >= MIN_CHUNK_SIZE) {
2670       assert((sz & CHUNK_ALIGN_MASK) == 0);
2671       assert(is_aligned(chunk2mem(p)));
2672       assert(next->prev_foot == sz);
2673       assert(pinuse(p));
2674       assert (next == m->top || cinuse(next));
2675       assert(p->fd->bk == p);
2676       assert(p->bk->fd == p);
2677     }
2678     else  /* markers are always of size SIZE_T_SIZE */
2679       assert(sz == SIZE_T_SIZE);
2680   }
2681 }
2682 
2683 /* Check properties of malloced chunks at the point they are malloced */
do_check_malloced_chunk(mstate m,void * mem,size_t s)2684 static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2685   if (mem != 0) {
2686     mchunkptr p = mem2chunk(mem);
2687     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2688     do_check_inuse_chunk(m, p);
2689     assert((sz & CHUNK_ALIGN_MASK) == 0);
2690     assert(sz >= MIN_CHUNK_SIZE);
2691     assert(sz >= s);
2692     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2693     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2694   }
2695 }
2696 
2697 /* Check a tree and its subtrees.  */
do_check_tree(mstate m,tchunkptr t)2698 static void do_check_tree(mstate m, tchunkptr t) {
2699   tchunkptr head = 0;
2700   tchunkptr u = t;
2701   bindex_t tindex = t->index;
2702   size_t tsize = chunksize(t);
2703   bindex_t idx;
2704   compute_tree_index(tsize, idx);
2705   assert(tindex == idx);
2706   assert(tsize >= MIN_LARGE_SIZE);
2707   assert(tsize >= minsize_for_tree_index(idx));
2708   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2709 
2710   do { /* traverse through chain of same-sized nodes */
2711     do_check_any_chunk(m, ((mchunkptr)u));
2712     assert(u->index == tindex);
2713     assert(chunksize(u) == tsize);
2714     assert(!cinuse(u));
2715     assert(!next_pinuse(u));
2716     assert(u->fd->bk == u);
2717     assert(u->bk->fd == u);
2718     if (u->parent == 0) {
2719       assert(u->child[0] == 0);
2720       assert(u->child[1] == 0);
2721     }
2722     else {
2723       assert(head == 0); /* only one node on chain has parent */
2724       head = u;
2725       assert(u->parent != u);
2726       assert (u->parent->child[0] == u ||
2727               u->parent->child[1] == u ||
2728               *((tbinptr*)(u->parent)) == u);
2729       if (u->child[0] != 0) {
2730         assert(u->child[0]->parent == u);
2731         assert(u->child[0] != u);
2732         do_check_tree(m, u->child[0]);
2733       }
2734       if (u->child[1] != 0) {
2735         assert(u->child[1]->parent == u);
2736         assert(u->child[1] != u);
2737         do_check_tree(m, u->child[1]);
2738       }
2739       if (u->child[0] != 0 && u->child[1] != 0) {
2740         assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2741       }
2742     }
2743     u = u->fd;
2744   } while (u != t);
2745   assert(head != 0);
2746 }
2747 
2748 /*  Check all the chunks in a treebin.  */
do_check_treebin(mstate m,bindex_t i)2749 static void do_check_treebin(mstate m, bindex_t i) {
2750   tbinptr* tb = treebin_at(m, i);
2751   tchunkptr t = *tb;
2752   int empty = (m->treemap & (1U << i)) == 0;
2753   if (t == 0)
2754     assert(empty);
2755   if (!empty)
2756     do_check_tree(m, t);
2757 }
2758 
2759 /*  Check all the chunks in a smallbin.  */
do_check_smallbin(mstate m,bindex_t i)2760 static void do_check_smallbin(mstate m, bindex_t i) {
2761   sbinptr b = smallbin_at(m, i);
2762   mchunkptr p = b->bk;
2763   unsigned int empty = (m->smallmap & (1U << i)) == 0;
2764   if (p == b)
2765     assert(empty);
2766   if (!empty) {
2767     for (; p != b; p = p->bk) {
2768       size_t size = chunksize(p);
2769       mchunkptr q;
2770       /* each chunk claims to be free */
2771       do_check_free_chunk(m, p);
2772       /* chunk belongs in bin */
2773       assert(small_index(size) == i);
2774       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2775       /* chunk is followed by an inuse chunk */
2776       q = next_chunk(p);
2777       if (q->head != FENCEPOST_HEAD)
2778         do_check_inuse_chunk(m, q);
2779     }
2780   }
2781 }
2782 
2783 /* Find x in a bin. Used in other check functions. */
bin_find(mstate m,mchunkptr x)2784 static int bin_find(mstate m, mchunkptr x) {
2785   size_t size = chunksize(x);
2786   if (is_small(size)) {
2787     bindex_t sidx = small_index(size);
2788     sbinptr b = smallbin_at(m, sidx);
2789     if (smallmap_is_marked(m, sidx)) {
2790       mchunkptr p = b;
2791       do {
2792         if (p == x)
2793           return 1;
2794       } while ((p = p->fd) != b);
2795     }
2796   }
2797   else {
2798     bindex_t tidx;
2799     compute_tree_index(size, tidx);
2800     if (treemap_is_marked(m, tidx)) {
2801       tchunkptr t = *treebin_at(m, tidx);
2802       size_t sizebits = size << leftshift_for_tree_index(tidx);
2803       while (t != 0 && chunksize(t) != size) {
2804         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2805         sizebits <<= 1;
2806       }
2807       if (t != 0) {
2808         tchunkptr u = t;
2809         do {
2810           if (u == (tchunkptr)x)
2811             return 1;
2812         } while ((u = u->fd) != t);
2813       }
2814     }
2815   }
2816   return 0;
2817 }
2818 
2819 /* Traverse each chunk and check it; return total */
traverse_and_check(mstate m)2820 static size_t traverse_and_check(mstate m) {
2821   size_t sum = 0;
2822   if (is_initialized(m)) {
2823     msegmentptr s = &m->seg;
2824     sum += m->topsize + TOP_FOOT_SIZE;
2825     while (s != 0) {
2826       mchunkptr q = align_as_chunk(s->base);
2827       mchunkptr lastq = 0;
2828       assert(pinuse(q));
2829       while (segment_holds(s, q) &&
2830              q != m->top && q->head != FENCEPOST_HEAD) {
2831         sum += chunksize(q);
2832         if (cinuse(q)) {
2833           assert(!bin_find(m, q));
2834           do_check_inuse_chunk(m, q);
2835         }
2836         else {
2837           assert(q == m->dv || bin_find(m, q));
2838           assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2839           do_check_free_chunk(m, q);
2840         }
2841         lastq = q;
2842         q = next_chunk(q);
2843       }
2844       s = s->next;
2845     }
2846   }
2847   return sum;
2848 }
2849 
2850 /* Check all properties of malloc_state. */
do_check_malloc_state(mstate m)2851 static void do_check_malloc_state(mstate m) {
2852   bindex_t i;
2853   size_t total;
2854   /* check bins */
2855   for (i = 0; i < NSMALLBINS; ++i)
2856     do_check_smallbin(m, i);
2857   for (i = 0; i < NTREEBINS; ++i)
2858     do_check_treebin(m, i);
2859 
2860   if (m->dvsize != 0) { /* check dv chunk */
2861     do_check_any_chunk(m, m->dv);
2862     assert(m->dvsize == chunksize(m->dv));
2863     assert(m->dvsize >= MIN_CHUNK_SIZE);
2864     assert(bin_find(m, m->dv) == 0);
2865   }
2866 
2867   if (m->top != 0) {   /* check top chunk */
2868     do_check_top_chunk(m, m->top);
2869     assert(m->topsize == chunksize(m->top));
2870     assert(m->topsize > 0);
2871     assert(bin_find(m, m->top) == 0);
2872   }
2873 
2874   total = traverse_and_check(m);
2875   assert(total <= m->footprint);
2876   assert(m->footprint <= m->max_footprint);
2877 }
2878 #endif /* DEBUG */
2879 
2880 /* ----------------------------- statistics ------------------------------ */
2881 
2882 #if !NO_MALLINFO
internal_mallinfo(mstate m)2883 static struct mallinfo internal_mallinfo(mstate m) {
2884   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2885   if (!PREACTION(m)) {
2886     check_malloc_state(m);
2887     if (is_initialized(m)) {
2888       size_t nfree = SIZE_T_ONE; /* top always free */
2889       size_t mfree = m->topsize + TOP_FOOT_SIZE;
2890       size_t sum = mfree;
2891       msegmentptr s = &m->seg;
2892       while (s != 0) {
2893         mchunkptr q = align_as_chunk(s->base);
2894         while (segment_holds(s, q) &&
2895                q != m->top && q->head != FENCEPOST_HEAD) {
2896           size_t sz = chunksize(q);
2897           sum += sz;
2898           if (!cinuse(q)) {
2899             mfree += sz;
2900             ++nfree;
2901           }
2902           q = next_chunk(q);
2903         }
2904         s = s->next;
2905       }
2906 
2907       nm.arena    = sum;
2908       nm.ordblks  = nfree;
2909       nm.hblkhd   = m->footprint - sum;
2910       nm.usmblks  = m->max_footprint;
2911       nm.uordblks = m->footprint - mfree;
2912       nm.fordblks = mfree;
2913       nm.keepcost = m->topsize;
2914     }
2915 
2916     POSTACTION(m);
2917   }
2918   return nm;
2919 }
2920 #endif /* !NO_MALLINFO */
2921 
internal_malloc_stats(mstate m)2922 static void internal_malloc_stats(mstate m) {
2923   if (!PREACTION(m)) {
2924     size_t maxfp = 0;
2925     size_t fp = 0;
2926     size_t used = 0;
2927     check_malloc_state(m);
2928     if (is_initialized(m)) {
2929       msegmentptr s = &m->seg;
2930       maxfp = m->max_footprint;
2931       fp = m->footprint;
2932       used = fp - (m->topsize + TOP_FOOT_SIZE);
2933 
2934       while (s != 0) {
2935         mchunkptr q = align_as_chunk(s->base);
2936         while (segment_holds(s, q) &&
2937                q != m->top && q->head != FENCEPOST_HEAD) {
2938           if (!cinuse(q))
2939             used -= chunksize(q);
2940           q = next_chunk(q);
2941         }
2942         s = s->next;
2943       }
2944     }
2945 
2946     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2947     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
2948     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
2949 
2950     POSTACTION(m);
2951   }
2952 }
2953 
2954 /* ----------------------- Operations on smallbins ----------------------- */
2955 
2956 /*
2957   Various forms of linking and unlinking are defined as macros.  Even
2958   the ones for trees, which are very long but have very short typical
2959   paths.  This is ugly but reduces reliance on inlining support of
2960   compilers.
2961 */
2962 
2963 /* Link a free chunk into a smallbin  */
2964 #define insert_small_chunk(M, P, S) {\
2965   bindex_t I  = small_index(S);\
2966   mchunkptr B = smallbin_at(M, I);\
2967   mchunkptr F = B;\
2968   assert(S >= MIN_CHUNK_SIZE);\
2969   if (!smallmap_is_marked(M, I))\
2970     mark_smallmap(M, I);\
2971   else if (RTCHECK(ok_address(M, B->fd)))\
2972     F = B->fd;\
2973   else {\
2974     CORRUPTION_ERROR_ACTION(M);\
2975   }\
2976   B->fd = P;\
2977   F->bk = P;\
2978   P->fd = F;\
2979   P->bk = B;\
2980 }
2981 
2982 /* Unlink a chunk from a smallbin  */
2983 #define unlink_small_chunk(M, P, S) {\
2984   mchunkptr F = P->fd;\
2985   mchunkptr B = P->bk;\
2986   bindex_t I = small_index(S);\
2987   assert(P != B);\
2988   assert(P != F);\
2989   assert(chunksize(P) == small_index2size(I));\
2990   if (F == B)\
2991     clear_smallmap(M, I);\
2992   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2993                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2994     F->bk = B;\
2995     B->fd = F;\
2996   }\
2997   else {\
2998     CORRUPTION_ERROR_ACTION(M);\
2999   }\
3000 }
3001 
3002 /* Unlink the first chunk from a smallbin */
3003 #define unlink_first_small_chunk(M, B, P, I) {\
3004   mchunkptr F = P->fd;\
3005   assert(P != B);\
3006   assert(P != F);\
3007   assert(chunksize(P) == small_index2size(I));\
3008   if (B == F)\
3009     clear_smallmap(M, I);\
3010   else if (RTCHECK(ok_address(M, F))) {\
3011     B->fd = F;\
3012     F->bk = B;\
3013   }\
3014   else {\
3015     CORRUPTION_ERROR_ACTION(M);\
3016   }\
3017 }
3018 
3019 /* Replace dv node, binning the old one */
3020 /* Used only when dvsize known to be small */
3021 #define replace_dv(M, P, S) {\
3022   size_t DVS = M->dvsize;\
3023   if (DVS != 0) {\
3024     mchunkptr DV = M->dv;\
3025     assert(is_small(DVS));\
3026     insert_small_chunk(M, DV, DVS);\
3027   }\
3028   M->dvsize = S;\
3029   M->dv = P;\
3030 }
3031 
3032 /* ------------------------- Operations on trees ------------------------- */
3033 
3034 /* Insert chunk into tree */
3035 #define insert_large_chunk(M, X, S) {\
3036   tbinptr* H;\
3037   bindex_t I;\
3038   compute_tree_index(S, I);\
3039   H = treebin_at(M, I);\
3040   X->index = I;\
3041   X->child[0] = X->child[1] = 0;\
3042   if (!treemap_is_marked(M, I)) {\
3043     mark_treemap(M, I);\
3044     *H = X;\
3045     X->parent = (tchunkptr)H;\
3046     X->fd = X->bk = X;\
3047   }\
3048   else {\
3049     tchunkptr T = *H;\
3050     size_t K = S << leftshift_for_tree_index(I);\
3051     for (;;) {\
3052       if (chunksize(T) != S) {\
3053         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3054         K <<= 1;\
3055         if (*C != 0)\
3056           T = *C;\
3057         else if (RTCHECK(ok_address(M, C))) {\
3058           *C = X;\
3059           X->parent = T;\
3060           X->fd = X->bk = X;\
3061           break;\
3062         }\
3063         else {\
3064           CORRUPTION_ERROR_ACTION(M);\
3065           break;\
3066         }\
3067       }\
3068       else {\
3069         tchunkptr F = T->fd;\
3070         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3071           T->fd = F->bk = X;\
3072           X->fd = F;\
3073           X->bk = T;\
3074           X->parent = 0;\
3075           break;\
3076         }\
3077         else {\
3078           CORRUPTION_ERROR_ACTION(M);\
3079           break;\
3080         }\
3081       }\
3082     }\
3083   }\
3084 }
3085 
3086 /*
3087   Unlink steps:
3088 
3089   1. If x is a chained node, unlink it from its same-sized fd/bk links
3090      and choose its bk node as its replacement.
3091   2. If x was the last node of its size, but not a leaf node, it must
3092      be replaced with a leaf node (not merely one with an open left or
3093      right), to make sure that lefts and rights of descendants
3094      correspond properly to bit masks.  We use the rightmost descendant
3095      of x.  We could use any other leaf, but this is easy to locate and
3096      tends to counteract removal of leftmosts elsewhere, and so keeps
3097      paths shorter than minimally guaranteed.  This doesn't loop much
3098      because on average a node in a tree is near the bottom.
3099   3. If x is the base of a chain (i.e., has parent links) relink
3100      x's parent and children to x's replacement (or null if none).
3101 */
3102 
3103 #define unlink_large_chunk(M, X) {\
3104   tchunkptr XP = X->parent;\
3105   tchunkptr R;\
3106   if (X->bk != X) {\
3107     tchunkptr F = X->fd;\
3108     R = X->bk;\
3109     if (RTCHECK(ok_address(M, F))) {\
3110       F->bk = R;\
3111       R->fd = F;\
3112     }\
3113     else {\
3114       CORRUPTION_ERROR_ACTION(M);\
3115     }\
3116   }\
3117   else {\
3118     tchunkptr* RP;\
3119     if (((R = *(RP = &(X->child[1]))) != 0) ||\
3120         ((R = *(RP = &(X->child[0]))) != 0)) {\
3121       tchunkptr* CP;\
3122       while ((*(CP = &(R->child[1])) != 0) ||\
3123              (*(CP = &(R->child[0])) != 0)) {\
3124         R = *(RP = CP);\
3125       }\
3126       if (RTCHECK(ok_address(M, RP)))\
3127         *RP = 0;\
3128       else {\
3129         CORRUPTION_ERROR_ACTION(M);\
3130       }\
3131     }\
3132   }\
3133   if (XP != 0) {\
3134     tbinptr* H = treebin_at(M, X->index);\
3135     if (X == *H) {\
3136       if ((*H = R) == 0) \
3137         clear_treemap(M, X->index);\
3138     }\
3139     else if (RTCHECK(ok_address(M, XP))) {\
3140       if (XP->child[0] == X) \
3141         XP->child[0] = R;\
3142       else \
3143         XP->child[1] = R;\
3144     }\
3145     else\
3146       CORRUPTION_ERROR_ACTION(M);\
3147     if (R != 0) {\
3148       if (RTCHECK(ok_address(M, R))) {\
3149         tchunkptr C0, C1;\
3150         R->parent = XP;\
3151         if ((C0 = X->child[0]) != 0) {\
3152           if (RTCHECK(ok_address(M, C0))) {\
3153             R->child[0] = C0;\
3154             C0->parent = R;\
3155           }\
3156           else\
3157             CORRUPTION_ERROR_ACTION(M);\
3158         }\
3159         if ((C1 = X->child[1]) != 0) {\
3160           if (RTCHECK(ok_address(M, C1))) {\
3161             R->child[1] = C1;\
3162             C1->parent = R;\
3163           }\
3164           else\
3165             CORRUPTION_ERROR_ACTION(M);\
3166         }\
3167       }\
3168       else\
3169         CORRUPTION_ERROR_ACTION(M);\
3170     }\
3171   }\
3172 }
3173 
3174 /* Relays to large vs small bin operations */
3175 
3176 #define insert_chunk(M, P, S)\
3177   if (is_small(S)) insert_small_chunk(M, P, S)\
3178   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3179 
3180 #define unlink_chunk(M, P, S)\
3181   if (is_small(S)) unlink_small_chunk(M, P, S)\
3182   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3183 
3184 
3185 /* Relays to internal calls to malloc/free from realloc, memalign etc */
3186 
3187 #if ONLY_MSPACES
3188 #define internal_malloc(m, b) mspace_malloc(m, b)
3189 #define internal_free(m, mem) mspace_free(m,mem);
3190 #else /* ONLY_MSPACES */
3191 #if MSPACES
3192 #define internal_malloc(m, b)\
3193    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3194 #define internal_free(m, mem)\
3195    if (m == gm) dlfree(mem); else mspace_free(m,mem);
3196 #else /* MSPACES */
3197 #define internal_malloc(m, b) dlmalloc(b)
3198 #define internal_free(m, mem) dlfree(mem)
3199 #endif /* MSPACES */
3200 #endif /* ONLY_MSPACES */
3201 
3202 /* -----------------------  Direct-mmapping chunks ----------------------- */
3203 
3204 /*
3205   Directly mmapped chunks are set up with an offset to the start of
3206   the mmapped region stored in the prev_foot field of the chunk. This
3207   allows reconstruction of the required argument to MUNMAP when freed,
3208   and also allows adjustment of the returned chunk to meet alignment
3209   requirements (especially in memalign).  There is also enough space
3210   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3211   the PINUSE bit so frees can be checked.
3212 */
3213 
3214 /* Malloc using mmap */
mmap_alloc(mstate m,size_t nb)3215 static void* mmap_alloc(mstate m, size_t nb) {
3216   size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3217   if (mmsize > nb) {     /* Check for wrap around 0 */
3218     char* mm = (char*)(DIRECT_MMAP(mmsize));
3219     if (mm != CMFAIL) {
3220       size_t offset = align_offset(chunk2mem(mm));
3221       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3222       mchunkptr p = (mchunkptr)(mm + offset);
3223       p->prev_foot = offset | IS_MMAPPED_BIT;
3224       (p)->head = (psize|CINUSE_BIT);
3225       mark_inuse_foot(m, p, psize);
3226       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3227       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3228 
3229       if (mm < m->least_addr)
3230         m->least_addr = mm;
3231       if ((m->footprint += mmsize) > m->max_footprint)
3232         m->max_footprint = m->footprint;
3233       assert(is_aligned(chunk2mem(p)));
3234       check_mmapped_chunk(m, p);
3235       return chunk2mem(p);
3236     }
3237   }
3238   return 0;
3239 }
3240 
3241 /* Realloc using mmap */
mmap_resize(mstate m,mchunkptr oldp,size_t nb)3242 static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3243   size_t oldsize = chunksize(oldp);
3244   if (is_small(nb)) /* Can't shrink mmap regions below small size */
3245     return 0;
3246   /* Keep old chunk if big enough but not too big */
3247   if (oldsize >= nb + SIZE_T_SIZE &&
3248       (oldsize - nb) <= (mparams.granularity << 1))
3249     return oldp;
3250   else {
3251     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3252     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3253     size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
3254                                          CHUNK_ALIGN_MASK);
3255     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3256                                   oldmmsize, newmmsize, 1);
3257     if (cp != CMFAIL) {
3258       mchunkptr newp = (mchunkptr)(cp + offset);
3259       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3260       newp->head = (psize|CINUSE_BIT);
3261       mark_inuse_foot(m, newp, psize);
3262       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3263       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3264 
3265       if (cp < m->least_addr)
3266         m->least_addr = cp;
3267       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3268         m->max_footprint = m->footprint;
3269       check_mmapped_chunk(m, newp);
3270       return newp;
3271     }
3272   }
3273   return 0;
3274 }
3275 
3276 /* -------------------------- mspace management -------------------------- */
3277 
3278 /* Initialize top chunk and its size */
init_top(mstate m,mchunkptr p,size_t psize)3279 static void init_top(mstate m, mchunkptr p, size_t psize) {
3280   /* Ensure alignment */
3281   size_t offset = align_offset(chunk2mem(p));
3282   p = (mchunkptr)((char*)p + offset);
3283   psize -= offset;
3284 
3285   m->top = p;
3286   m->topsize = psize;
3287   p->head = psize | PINUSE_BIT;
3288   /* set size of fake trailing chunk holding overhead space only once */
3289   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3290   m->trim_check = mparams.trim_threshold; /* reset on each update */
3291 }
3292 
3293 /* Initialize bins for a new mstate that is otherwise zeroed out */
init_bins(mstate m)3294 static void init_bins(mstate m) {
3295   /* Establish circular links for smallbins */
3296   bindex_t i;
3297   for (i = 0; i < NSMALLBINS; ++i) {
3298     sbinptr bin = smallbin_at(m,i);
3299     bin->fd = bin->bk = bin;
3300   }
3301 }
3302 
3303 #if PROCEED_ON_ERROR
3304 
3305 /* default corruption action */
reset_on_error(mstate m)3306 static void reset_on_error(mstate m) {
3307   int i;
3308   ++malloc_corruption_error_count;
3309   /* Reinitialize fields to forget about all memory */
3310   m->smallbins = m->treebins = 0;
3311   m->dvsize = m->topsize = 0;
3312   m->seg.base = 0;
3313   m->seg.size = 0;
3314   m->seg.next = 0;
3315   m->top = m->dv = 0;
3316   for (i = 0; i < NTREEBINS; ++i)
3317     *treebin_at(m, i) = 0;
3318   init_bins(m);
3319 }
3320 #endif /* PROCEED_ON_ERROR */
3321 
3322 /* Allocate chunk and prepend remainder with chunk in successor base. */
prepend_alloc(mstate m,char * newbase,char * oldbase,size_t nb)3323 static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3324                            size_t nb) {
3325   mchunkptr p = align_as_chunk(newbase);
3326   mchunkptr oldfirst = align_as_chunk(oldbase);
3327   size_t psize = (char*)oldfirst - (char*)p;
3328   mchunkptr q = chunk_plus_offset(p, nb);
3329   size_t qsize = psize - nb;
3330   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3331 
3332   assert((char*)oldfirst > (char*)q);
3333   assert(pinuse(oldfirst));
3334   assert(qsize >= MIN_CHUNK_SIZE);
3335 
3336   /* consolidate remainder with first chunk of old base */
3337   if (oldfirst == m->top) {
3338     size_t tsize = m->topsize += qsize;
3339     m->top = q;
3340     q->head = tsize | PINUSE_BIT;
3341     check_top_chunk(m, q);
3342   }
3343   else if (oldfirst == m->dv) {
3344     size_t dsize = m->dvsize += qsize;
3345     m->dv = q;
3346     set_size_and_pinuse_of_free_chunk(q, dsize);
3347   }
3348   else {
3349     if (!cinuse(oldfirst)) {
3350       size_t nsize = chunksize(oldfirst);
3351       unlink_chunk(m, oldfirst, nsize);
3352       oldfirst = chunk_plus_offset(oldfirst, nsize);
3353       qsize += nsize;
3354     }
3355     set_free_with_pinuse(q, qsize, oldfirst);
3356     insert_chunk(m, q, qsize);
3357     check_free_chunk(m, q);
3358   }
3359 
3360   check_malloced_chunk(m, chunk2mem(p), nb);
3361   return chunk2mem(p);
3362 }
3363 
3364 
3365 /* Add a segment to hold a new noncontiguous region */
add_segment(mstate m,char * tbase,size_t tsize,flag_t mmapped)3366 static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3367   /* Determine locations and sizes of segment, fenceposts, old top */
3368   char* old_top = (char*)m->top;
3369   msegmentptr oldsp = segment_holding(m, old_top);
3370   char* old_end = oldsp->base + oldsp->size;
3371   size_t ssize = pad_request(sizeof(struct malloc_segment));
3372   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3373   size_t offset = align_offset(chunk2mem(rawsp));
3374   char* asp = rawsp + offset;
3375   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3376   mchunkptr sp = (mchunkptr)csp;
3377   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3378   mchunkptr tnext = chunk_plus_offset(sp, ssize);
3379   mchunkptr p = tnext;
3380   int nfences = 0;
3381 
3382   /* reset top to new space */
3383   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3384 
3385   /* Set up segment record */
3386   assert(is_aligned(ss));
3387   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3388   *ss = m->seg; /* Push current record */
3389   m->seg.base = tbase;
3390   m->seg.size = tsize;
3391   (void)set_segment_flags(&m->seg, mmapped);
3392   m->seg.next = ss;
3393 
3394   /* Insert trailing fenceposts */
3395   for (;;) {
3396     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3397     p->head = FENCEPOST_HEAD;
3398     ++nfences;
3399     if ((char*)(&(nextp->head)) < old_end)
3400       p = nextp;
3401     else
3402       break;
3403   }
3404   assert(nfences >= 2);
3405 
3406   /* Insert the rest of old top into a bin as an ordinary free chunk */
3407   if (csp != old_top) {
3408     mchunkptr q = (mchunkptr)old_top;
3409     size_t psize = csp - old_top;
3410     mchunkptr tn = chunk_plus_offset(q, psize);
3411     set_free_with_pinuse(q, psize, tn);
3412     insert_chunk(m, q, psize);
3413   }
3414 
3415   check_top_chunk(m, m->top);
3416 }
3417 
3418 /* -------------------------- System allocation -------------------------- */
3419 
3420 /* Get memory from system using MORECORE or MMAP */
sys_alloc(mstate m,size_t nb)3421 static void* sys_alloc(mstate m, size_t nb) {
3422   char* tbase = CMFAIL;
3423   size_t tsize = 0;
3424   flag_t mmap_flag = 0;
3425 
3426   init_mparams();
3427 
3428   /* Directly map large chunks */
3429   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3430     void* mem = mmap_alloc(m, nb);
3431     if (mem != 0)
3432       return mem;
3433   }
3434 
3435   /*
3436     Try getting memory in any of three ways (in most-preferred to
3437     least-preferred order):
3438     1. A call to MORECORE that can normally contiguously extend memory.
3439        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3440        or main space is mmapped or a previous contiguous call failed)
3441     2. A call to MMAP new space (disabled if not HAVE_MMAP).
3442        Note that under the default settings, if MORECORE is unable to
3443        fulfill a request, and HAVE_MMAP is true, then mmap is
3444        used as a noncontiguous system allocator. This is a useful backup
3445        strategy for systems with holes in address spaces -- in this case
3446        sbrk cannot contiguously expand the heap, but mmap may be able to
3447        find space.
3448     3. A call to MORECORE that cannot usually contiguously extend memory.
3449        (disabled if not HAVE_MORECORE)
3450   */
3451 
3452   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3453     char* br = CMFAIL;
3454     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3455     size_t asize = 0;
3456     ACQUIRE_MORECORE_LOCK();
3457 
3458     if (ss == 0) {  /* First time through or recovery */
3459       char* base = (char*)CALL_MORECORE(0);
3460       if (base != CMFAIL) {
3461         asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3462         /* Adjust to end on a page boundary */
3463         if (!is_page_aligned(base))
3464           asize += (page_align((size_t)base) - (size_t)base);
3465         /* Can't call MORECORE if size is negative when treated as signed */
3466         if (asize < HALF_MAX_SIZE_T &&
3467             (br = (char*)(CALL_MORECORE(asize))) == base) {
3468           tbase = base;
3469           tsize = asize;
3470         }
3471       }
3472     }
3473     else {
3474       /* Subtract out existing available top space from MORECORE request. */
3475       asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
3476       /* Use mem here only if it did continuously extend old space */
3477       if (asize < HALF_MAX_SIZE_T &&
3478           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3479         tbase = br;
3480         tsize = asize;
3481       }
3482     }
3483 
3484     if (tbase == CMFAIL) {    /* Cope with partial failure */
3485       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
3486         if (asize < HALF_MAX_SIZE_T &&
3487             asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
3488           size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
3489           if (esize < HALF_MAX_SIZE_T) {
3490             char* end = (char*)CALL_MORECORE(esize);
3491             if (end != CMFAIL)
3492               asize += esize;
3493             else {            /* Can't use; try to release */
3494               (void)CALL_MORECORE(-asize);
3495               br = CMFAIL;
3496             }
3497           }
3498         }
3499       }
3500       if (br != CMFAIL) {    /* Use the space we did get */
3501         tbase = br;
3502         tsize = asize;
3503       }
3504       else
3505         disable_contiguous(m); /* Don't try contiguous path in the future */
3506     }
3507 
3508     RELEASE_MORECORE_LOCK();
3509   }
3510 
3511   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
3512     size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
3513     size_t rsize = granularity_align(req);
3514     if (rsize > nb) { /* Fail if wraps around zero */
3515       char* mp = (char*)(CALL_MMAP(rsize));
3516       if (mp != CMFAIL) {
3517         tbase = mp;
3518         tsize = rsize;
3519         mmap_flag = IS_MMAPPED_BIT;
3520       }
3521     }
3522   }
3523 
3524   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
3525     size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3526     if (asize < HALF_MAX_SIZE_T) {
3527       char* br = CMFAIL;
3528       char* end = CMFAIL;
3529       ACQUIRE_MORECORE_LOCK();
3530       br = (char*)(CALL_MORECORE(asize));
3531       end = (char*)(CALL_MORECORE(0));
3532       RELEASE_MORECORE_LOCK();
3533       if (br != CMFAIL && end != CMFAIL && br < end) {
3534         size_t ssize = end - br;
3535         if (ssize > nb + TOP_FOOT_SIZE) {
3536           tbase = br;
3537           tsize = ssize;
3538         }
3539       }
3540     }
3541   }
3542 
3543   if (tbase != CMFAIL) {
3544 
3545     if ((m->footprint += tsize) > m->max_footprint)
3546       m->max_footprint = m->footprint;
3547 
3548     if (!is_initialized(m)) { /* first-time initialization */
3549       m->seg.base = m->least_addr = tbase;
3550       m->seg.size = tsize;
3551       (void)set_segment_flags(&m->seg, mmap_flag);
3552       m->magic = mparams.magic;
3553       init_bins(m);
3554       if (is_global(m))
3555         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3556       else {
3557         /* Offset top by embedded malloc_state */
3558         mchunkptr mn = next_chunk(mem2chunk(m));
3559         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
3560       }
3561     }
3562 
3563     else {
3564       /* Try to merge with an existing segment */
3565       msegmentptr sp = &m->seg;
3566       while (sp != 0 && tbase != sp->base + sp->size)
3567         sp = sp->next;
3568       if (sp != 0 &&
3569           !is_extern_segment(sp) &&
3570 	  check_segment_merge(sp, tbase, tsize) &&
3571           (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag &&
3572           segment_holds(sp, m->top)) { /* append */
3573         sp->size += tsize;
3574         init_top(m, m->top, m->topsize + tsize);
3575       }
3576       else {
3577         if (tbase < m->least_addr)
3578           m->least_addr = tbase;
3579         sp = &m->seg;
3580         while (sp != 0 && sp->base != tbase + tsize)
3581           sp = sp->next;
3582         if (sp != 0 &&
3583             !is_extern_segment(sp) &&
3584 	    check_segment_merge(sp, tbase, tsize) &&
3585             (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) {
3586           char* oldbase = sp->base;
3587           sp->base = tbase;
3588           sp->size += tsize;
3589           return prepend_alloc(m, tbase, oldbase, nb);
3590         }
3591         else
3592           add_segment(m, tbase, tsize, mmap_flag);
3593       }
3594     }
3595 
3596     if (nb < m->topsize) { /* Allocate from new or extended top space */
3597       size_t rsize = m->topsize -= nb;
3598       mchunkptr p = m->top;
3599       mchunkptr r = m->top = chunk_plus_offset(p, nb);
3600       r->head = rsize | PINUSE_BIT;
3601       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3602       check_top_chunk(m, m->top);
3603       check_malloced_chunk(m, chunk2mem(p), nb);
3604       return chunk2mem(p);
3605     }
3606   }
3607 
3608   MALLOC_FAILURE_ACTION;
3609   return 0;
3610 }
3611 
3612 /* -----------------------  system deallocation -------------------------- */
3613 
3614 /* Unmap and unlink any mmapped segments that don't contain used chunks */
release_unused_segments(mstate m)3615 static size_t release_unused_segments(mstate m) {
3616   size_t released = 0;
3617   msegmentptr pred = &m->seg;
3618   msegmentptr sp = pred->next;
3619   while (sp != 0) {
3620     char* base = sp->base;
3621     size_t size = sp->size;
3622     msegmentptr next = sp->next;
3623     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
3624       mchunkptr p = align_as_chunk(base);
3625       size_t psize = chunksize(p);
3626       /* Can unmap if first chunk holds entire segment and not pinned */
3627       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
3628         tchunkptr tp = (tchunkptr)p;
3629         assert(segment_holds(sp, (char*)sp));
3630         if (p == m->dv) {
3631           m->dv = 0;
3632           m->dvsize = 0;
3633         }
3634         else {
3635           unlink_large_chunk(m, tp);
3636         }
3637         if (CALL_MUNMAP(base, size) == 0) {
3638           released += size;
3639           m->footprint -= size;
3640           /* unlink obsoleted record */
3641           sp = pred;
3642           sp->next = next;
3643         }
3644         else { /* back out if cannot unmap */
3645           insert_large_chunk(m, tp, psize);
3646         }
3647       }
3648     }
3649     pred = sp;
3650     sp = next;
3651   }
3652   return released;
3653 }
3654 
sys_trim(mstate m,size_t pad)3655 static int sys_trim(mstate m, size_t pad) {
3656   size_t released = 0;
3657   if (pad < MAX_REQUEST && is_initialized(m)) {
3658     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3659 
3660     if (m->topsize > pad) {
3661       /* Shrink top space in granularity-size units, keeping at least one */
3662       size_t unit = mparams.granularity;
3663       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3664                       SIZE_T_ONE) * unit;
3665       msegmentptr sp = segment_holding(m, (char*)m->top);
3666 
3667       if (!is_extern_segment(sp)) {
3668         if (is_mmapped_segment(sp)) {
3669           if (HAVE_MMAP &&
3670               sp->size >= extra &&
3671               !has_segment_link(m, sp)) { /* can't shrink if pinned */
3672             size_t newsize = sp->size - extra;
3673             /* Prefer mremap, fall back to munmap */
3674             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3675                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3676               released = extra;
3677             }
3678           }
3679         }
3680         else if (HAVE_MORECORE) {
3681           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3682             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3683           ACQUIRE_MORECORE_LOCK();
3684           {
3685             /* Make sure end of memory is where we last set it. */
3686             char* old_br = (char*)(CALL_MORECORE(0));
3687             if (old_br == sp->base + sp->size) {
3688               char* rel_br = (char*)(CALL_MORECORE(-extra));
3689               char* new_br = (char*)(CALL_MORECORE(0));
3690               if (rel_br != CMFAIL && new_br < old_br)
3691                 released = old_br - new_br;
3692             }
3693           }
3694           RELEASE_MORECORE_LOCK();
3695         }
3696       }
3697 
3698       if (released != 0) {
3699         sp->size -= released;
3700         m->footprint -= released;
3701         init_top(m, m->top, m->topsize - released);
3702         check_top_chunk(m, m->top);
3703       }
3704     }
3705 
3706     /* Unmap any unused mmapped segments */
3707     if (HAVE_MMAP)
3708       released += release_unused_segments(m);
3709 
3710     /* On failure, disable autotrim to avoid repeated failed future calls */
3711     if (released == 0)
3712       m->trim_check = MAX_SIZE_T;
3713   }
3714 
3715   return (released != 0)? 1 : 0;
3716 }
3717 
3718 /* ---------------------------- malloc support --------------------------- */
3719 
3720 /* allocate a large request from the best fitting chunk in a treebin */
tmalloc_large(mstate m,size_t nb)3721 static void* tmalloc_large(mstate m, size_t nb) {
3722   tchunkptr v = 0;
3723   size_t rsize = -nb; /* Unsigned negation */
3724   tchunkptr t;
3725   bindex_t idx;
3726   compute_tree_index(nb, idx);
3727 
3728   if ((t = *treebin_at(m, idx)) != 0) {
3729     /* Traverse tree for this bin looking for node with size == nb */
3730     size_t sizebits = nb << leftshift_for_tree_index(idx);
3731     tchunkptr rst = 0;  /* The deepest untaken right subtree */
3732     for (;;) {
3733       tchunkptr rt;
3734       size_t trem = chunksize(t) - nb;
3735       if (trem < rsize) {
3736         v = t;
3737         if ((rsize = trem) == 0)
3738           break;
3739       }
3740       rt = t->child[1];
3741       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3742       if (rt != 0 && rt != t)
3743         rst = rt;
3744       if (t == 0) {
3745         t = rst; /* set t to least subtree holding sizes > nb */
3746         break;
3747       }
3748       sizebits <<= 1;
3749     }
3750   }
3751 
3752   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3753     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3754     if (leftbits != 0) {
3755       bindex_t i;
3756       binmap_t leastbit = least_bit(leftbits);
3757       compute_bit2idx(leastbit, i);
3758       t = *treebin_at(m, i);
3759     }
3760   }
3761 
3762   while (t != 0) { /* find smallest of tree or subtree */
3763     size_t trem = chunksize(t) - nb;
3764     if (trem < rsize) {
3765       rsize = trem;
3766       v = t;
3767     }
3768     t = leftmost_child(t);
3769   }
3770 
3771   /*  If dv is a better fit, return 0 so malloc will use it */
3772   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3773     if (RTCHECK(ok_address(m, v))) { /* split */
3774       mchunkptr r = chunk_plus_offset(v, nb);
3775       assert(chunksize(v) == rsize + nb);
3776       if (RTCHECK(ok_next(v, r))) {
3777         unlink_large_chunk(m, v);
3778         if (rsize < MIN_CHUNK_SIZE)
3779           set_inuse_and_pinuse(m, v, (rsize + nb));
3780         else {
3781           set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3782           set_size_and_pinuse_of_free_chunk(r, rsize);
3783           insert_chunk(m, r, rsize);
3784         }
3785         return chunk2mem(v);
3786       }
3787     }
3788     CORRUPTION_ERROR_ACTION(m);
3789   }
3790   return 0;
3791 }
3792 
3793 /* allocate a small request from the best fitting chunk in a treebin */
tmalloc_small(mstate m,size_t nb)3794 static void* tmalloc_small(mstate m, size_t nb) {
3795   tchunkptr t, v;
3796   size_t rsize;
3797   bindex_t i;
3798   binmap_t leastbit = least_bit(m->treemap);
3799   compute_bit2idx(leastbit, i);
3800 
3801   v = t = *treebin_at(m, i);
3802   rsize = chunksize(t) - nb;
3803 
3804   while ((t = leftmost_child(t)) != 0) {
3805     size_t trem = chunksize(t) - nb;
3806     if (trem < rsize) {
3807       rsize = trem;
3808       v = t;
3809     }
3810   }
3811 
3812   if (RTCHECK(ok_address(m, v))) {
3813     mchunkptr r = chunk_plus_offset(v, nb);
3814     assert(chunksize(v) == rsize + nb);
3815     if (RTCHECK(ok_next(v, r))) {
3816       unlink_large_chunk(m, v);
3817       if (rsize < MIN_CHUNK_SIZE)
3818         set_inuse_and_pinuse(m, v, (rsize + nb));
3819       else {
3820         set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3821         set_size_and_pinuse_of_free_chunk(r, rsize);
3822         replace_dv(m, r, rsize);
3823       }
3824       return chunk2mem(v);
3825     }
3826   }
3827 
3828   CORRUPTION_ERROR_ACTION(m);
3829   return 0;
3830 }
3831 
3832 /* --------------------------- realloc support --------------------------- */
3833 
internal_realloc(mstate m,void * oldmem,size_t bytes)3834 static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3835   if (bytes >= MAX_REQUEST) {
3836     MALLOC_FAILURE_ACTION;
3837     return 0;
3838   }
3839   if (!PREACTION(m)) {
3840     mchunkptr oldp = mem2chunk(oldmem);
3841     size_t oldsize = chunksize(oldp);
3842     mchunkptr next = chunk_plus_offset(oldp, oldsize);
3843     mchunkptr newp = 0;
3844     void* extra = 0;
3845 
3846     /* Try to either shrink or extend into top. Else malloc-copy-free */
3847 
3848     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3849                 ok_next(oldp, next) && ok_pinuse(next))) {
3850       size_t nb = request2size(bytes);
3851       if (is_mmapped(oldp))
3852         newp = mmap_resize(m, oldp, nb);
3853       else if (oldsize >= nb) { /* already big enough */
3854         size_t rsize = oldsize - nb;
3855         newp = oldp;
3856         if (rsize >= MIN_CHUNK_SIZE) {
3857           mchunkptr remainder = chunk_plus_offset(newp, nb);
3858           set_inuse(m, newp, nb);
3859           set_inuse(m, remainder, rsize);
3860           extra = chunk2mem(remainder);
3861         }
3862       }
3863       else if (next == m->top && oldsize + m->topsize > nb) {
3864         /* Expand into top */
3865         size_t newsize = oldsize + m->topsize;
3866         size_t newtopsize = newsize - nb;
3867         mchunkptr newtop = chunk_plus_offset(oldp, nb);
3868         set_inuse(m, oldp, nb);
3869         newtop->head = newtopsize |PINUSE_BIT;
3870         m->top = newtop;
3871         m->topsize = newtopsize;
3872         newp = oldp;
3873       }
3874     }
3875     else {
3876       USAGE_ERROR_ACTION(m, oldmem);
3877       POSTACTION(m);
3878       return 0;
3879     }
3880 
3881     POSTACTION(m);
3882 
3883     if (newp != 0) {
3884       if (extra != 0) {
3885         internal_free(m, extra);
3886       }
3887       check_inuse_chunk(m, newp);
3888       return chunk2mem(newp);
3889     }
3890     else {
3891       void* newmem = internal_malloc(m, bytes);
3892       if (newmem != 0) {
3893         size_t oc = oldsize - overhead_for(oldp);
3894         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3895         internal_free(m, oldmem);
3896       }
3897       return newmem;
3898     }
3899   }
3900   return 0;
3901 }
3902 
3903 /* --------------------------- memalign support -------------------------- */
3904 
internal_memalign(mstate m,size_t alignment,size_t bytes)3905 static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3906   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
3907     return internal_malloc(m, bytes);
3908   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3909     alignment = MIN_CHUNK_SIZE;
3910   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3911     size_t a = MALLOC_ALIGNMENT << 1;
3912     while (a < alignment) a <<= 1;
3913     alignment = a;
3914   }
3915 
3916   if (bytes >= MAX_REQUEST - alignment) {
3917     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
3918       MALLOC_FAILURE_ACTION;
3919     }
3920   }
3921   else {
3922     size_t nb = request2size(bytes);
3923     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3924     char* mem = (char*)internal_malloc(m, req);
3925     if (mem != 0) {
3926       void* leader = 0;
3927       void* trailer = 0;
3928       mchunkptr p = mem2chunk(mem);
3929 
3930       if (PREACTION(m)) return 0;
3931       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3932         /*
3933           Find an aligned spot inside chunk.  Since we need to give
3934           back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3935           the first calculation places us at a spot with less than
3936           MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3937           We've allocated enough total room so that this is always
3938           possible.
3939         */
3940         char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3941                                                        alignment -
3942                                                        SIZE_T_ONE)) &
3943                                              -alignment));
3944         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3945           br : br+alignment;
3946         mchunkptr newp = (mchunkptr)pos;
3947         size_t leadsize = pos - (char*)(p);
3948         size_t newsize = chunksize(p) - leadsize;
3949 
3950         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3951           newp->prev_foot = p->prev_foot + leadsize;
3952           newp->head = (newsize|CINUSE_BIT);
3953         }
3954         else { /* Otherwise, give back leader, use the rest */
3955           set_inuse(m, newp, newsize);
3956           set_inuse(m, p, leadsize);
3957           leader = chunk2mem(p);
3958         }
3959         p = newp;
3960       }
3961 
3962       /* Give back spare room at the end */
3963       if (!is_mmapped(p)) {
3964         size_t size = chunksize(p);
3965         if (size > nb + MIN_CHUNK_SIZE) {
3966           size_t remainder_size = size - nb;
3967           mchunkptr remainder = chunk_plus_offset(p, nb);
3968           set_inuse(m, p, nb);
3969           set_inuse(m, remainder, remainder_size);
3970           trailer = chunk2mem(remainder);
3971         }
3972       }
3973 
3974       assert (chunksize(p) >= nb);
3975       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3976       check_inuse_chunk(m, p);
3977       POSTACTION(m);
3978       if (leader != 0) {
3979         internal_free(m, leader);
3980       }
3981       if (trailer != 0) {
3982         internal_free(m, trailer);
3983       }
3984       return chunk2mem(p);
3985     }
3986   }
3987   return 0;
3988 }
3989 
3990 /* ------------------------ comalloc/coalloc support --------------------- */
3991 
ialloc(mstate m,size_t n_elements,size_t * sizes,int opts,void * chunks[])3992 static void** ialloc(mstate m,
3993                      size_t n_elements,
3994                      size_t* sizes,
3995                      int opts,
3996                      void* chunks[]) {
3997   /*
3998     This provides common support for independent_X routines, handling
3999     all of the combinations that can result.
4000 
4001     The opts arg has:
4002     bit 0 set if all elements are same size (using sizes[0])
4003     bit 1 set if elements should be zeroed
4004   */
4005 
4006   size_t    element_size;   /* chunksize of each element, if all same */
4007   size_t    contents_size;  /* total size of elements */
4008   size_t    array_size;     /* request size of pointer array */
4009   void*     mem;            /* malloced aggregate space */
4010   mchunkptr p;              /* corresponding chunk */
4011   size_t    remainder_size; /* remaining bytes while splitting */
4012   void**    marray;         /* either "chunks" or malloced ptr array */
4013   mchunkptr array_chunk;    /* chunk for malloced ptr array */
4014   flag_t    was_enabled;    /* to disable mmap */
4015   size_t    size;
4016   size_t    i;
4017 
4018   /* compute array length, if needed */
4019   if (chunks != 0) {
4020     if (n_elements == 0)
4021       return chunks; /* nothing to do */
4022     marray = chunks;
4023     array_size = 0;
4024   }
4025   else {
4026     /* if empty req, must still return chunk representing empty array */
4027     if (n_elements == 0)
4028       return (void**)internal_malloc(m, 0);
4029     marray = 0;
4030     array_size = request2size(n_elements * (sizeof(void*)));
4031   }
4032 
4033   /* compute total element size */
4034   if (opts & 0x1) { /* all-same-size */
4035     element_size = request2size(*sizes);
4036     contents_size = n_elements * element_size;
4037   }
4038   else { /* add up all the sizes */
4039     element_size = 0;
4040     contents_size = 0;
4041     for (i = 0; i != n_elements; ++i)
4042       contents_size += request2size(sizes[i]);
4043   }
4044 
4045   size = contents_size + array_size;
4046 
4047   /*
4048      Allocate the aggregate chunk.  First disable direct-mmapping so
4049      malloc won't use it, since we would not be able to later
4050      free/realloc space internal to a segregated mmap region.
4051   */
4052   was_enabled = use_mmap(m);
4053   disable_mmap(m);
4054   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
4055   if (was_enabled)
4056     enable_mmap(m);
4057   if (mem == 0)
4058     return 0;
4059 
4060   if (PREACTION(m)) return 0;
4061   p = mem2chunk(mem);
4062   remainder_size = chunksize(p);
4063 
4064   assert(!is_mmapped(p));
4065 
4066   if (opts & 0x2) {       /* optionally clear the elements */
4067     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
4068   }
4069 
4070   /* If not provided, allocate the pointer array as final part of chunk */
4071   if (marray == 0) {
4072     size_t  array_chunk_size;
4073     array_chunk = chunk_plus_offset(p, contents_size);
4074     array_chunk_size = remainder_size - contents_size;
4075     marray = (void**) (chunk2mem(array_chunk));
4076     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
4077     remainder_size = contents_size;
4078   }
4079 
4080   /* split out elements */
4081   for (i = 0; ; ++i) {
4082     marray[i] = chunk2mem(p);
4083     if (i != n_elements-1) {
4084       if (element_size != 0)
4085         size = element_size;
4086       else
4087         size = request2size(sizes[i]);
4088       remainder_size -= size;
4089       set_size_and_pinuse_of_inuse_chunk(m, p, size);
4090       p = chunk_plus_offset(p, size);
4091     }
4092     else { /* the final element absorbs any overallocation slop */
4093       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
4094       break;
4095     }
4096   }
4097 
4098 #if DEBUG
4099   if (marray != chunks) {
4100     /* final element must have exactly exhausted chunk */
4101     if (element_size != 0) {
4102       assert(remainder_size == element_size);
4103     }
4104     else {
4105       assert(remainder_size == request2size(sizes[i]));
4106     }
4107     check_inuse_chunk(m, mem2chunk(marray));
4108   }
4109   for (i = 0; i != n_elements; ++i)
4110     check_inuse_chunk(m, mem2chunk(marray[i]));
4111 
4112 #endif /* DEBUG */
4113 
4114   POSTACTION(m);
4115   return marray;
4116 }
4117 
4118 
4119 /* -------------------------- public routines ---------------------------- */
4120 
4121 #if !ONLY_MSPACES
4122 
dlmalloc(size_t bytes)4123 void* dlmalloc(size_t bytes) {
4124   /*
4125      Basic algorithm:
4126      If a small request (< 256 bytes minus per-chunk overhead):
4127        1. If one exists, use a remainderless chunk in associated smallbin.
4128           (Remainderless means that there are too few excess bytes to
4129           represent as a chunk.)
4130        2. If it is big enough, use the dv chunk, which is normally the
4131           chunk adjacent to the one used for the most recent small request.
4132        3. If one exists, split the smallest available chunk in a bin,
4133           saving remainder in dv.
4134        4. If it is big enough, use the top chunk.
4135        5. If available, get memory from system and use it
4136      Otherwise, for a large request:
4137        1. Find the smallest available binned chunk that fits, and use it
4138           if it is better fitting than dv chunk, splitting if necessary.
4139        2. If better fitting than any binned chunk, use the dv chunk.
4140        3. If it is big enough, use the top chunk.
4141        4. If request size >= mmap threshold, try to directly mmap this chunk.
4142        5. If available, get memory from system and use it
4143 
4144      The ugly goto's here ensure that postaction occurs along all paths.
4145   */
4146 
4147   if (!PREACTION(gm)) {
4148     void* mem;
4149     size_t nb;
4150     if (bytes <= MAX_SMALL_REQUEST) {
4151       bindex_t idx;
4152       binmap_t smallbits;
4153       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4154       idx = small_index(nb);
4155       smallbits = gm->smallmap >> idx;
4156 
4157       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4158         mchunkptr b, p;
4159         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
4160         b = smallbin_at(gm, idx);
4161         p = b->fd;
4162         assert(chunksize(p) == small_index2size(idx));
4163         unlink_first_small_chunk(gm, b, p, idx);
4164         set_inuse_and_pinuse(gm, p, small_index2size(idx));
4165         mem = chunk2mem(p);
4166         check_malloced_chunk(gm, mem, nb);
4167         goto postaction;
4168       }
4169 
4170       else if (nb > gm->dvsize) {
4171         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4172           mchunkptr b, p, r;
4173           size_t rsize;
4174           bindex_t i;
4175           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4176           binmap_t leastbit = least_bit(leftbits);
4177           compute_bit2idx(leastbit, i);
4178           b = smallbin_at(gm, i);
4179           p = b->fd;
4180           assert(chunksize(p) == small_index2size(i));
4181           unlink_first_small_chunk(gm, b, p, i);
4182           rsize = small_index2size(i) - nb;
4183           /* Fit here cannot be remainderless if 4byte sizes */
4184           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4185             set_inuse_and_pinuse(gm, p, small_index2size(i));
4186           else {
4187             set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4188             r = chunk_plus_offset(p, nb);
4189             set_size_and_pinuse_of_free_chunk(r, rsize);
4190             replace_dv(gm, r, rsize);
4191           }
4192           mem = chunk2mem(p);
4193           check_malloced_chunk(gm, mem, nb);
4194           goto postaction;
4195         }
4196 
4197         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4198           check_malloced_chunk(gm, mem, nb);
4199           goto postaction;
4200         }
4201       }
4202     }
4203     else if (bytes >= MAX_REQUEST)
4204       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4205     else {
4206       nb = pad_request(bytes);
4207       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4208         check_malloced_chunk(gm, mem, nb);
4209         goto postaction;
4210       }
4211     }
4212 
4213     if (nb <= gm->dvsize) {
4214       size_t rsize = gm->dvsize - nb;
4215       mchunkptr p = gm->dv;
4216       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4217         mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4218         gm->dvsize = rsize;
4219         set_size_and_pinuse_of_free_chunk(r, rsize);
4220         set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4221       }
4222       else { /* exhaust dv */
4223         size_t dvs = gm->dvsize;
4224         gm->dvsize = 0;
4225         gm->dv = 0;
4226         set_inuse_and_pinuse(gm, p, dvs);
4227       }
4228       mem = chunk2mem(p);
4229       check_malloced_chunk(gm, mem, nb);
4230       goto postaction;
4231     }
4232 
4233     else if (nb < gm->topsize) { /* Split top */
4234       size_t rsize = gm->topsize -= nb;
4235       mchunkptr p = gm->top;
4236       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4237       r->head = rsize | PINUSE_BIT;
4238       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4239       mem = chunk2mem(p);
4240       check_top_chunk(gm, gm->top);
4241       check_malloced_chunk(gm, mem, nb);
4242       goto postaction;
4243     }
4244 
4245     mem = sys_alloc(gm, nb);
4246 
4247   postaction:
4248     POSTACTION(gm);
4249     return mem;
4250   }
4251 
4252   return 0;
4253 }
4254 
dlfree(void * mem)4255 void dlfree(void* mem) {
4256   /*
4257      Consolidate freed chunks with preceding or succeeding bordering
4258      free chunks, if they exist, and then place in a bin.  Intermixed
4259      with special cases for top, dv, mmapped chunks, and usage errors.
4260   */
4261 
4262   if (mem != 0) {
4263     mchunkptr p  = mem2chunk(mem);
4264 #if FOOTERS
4265     mstate fm = get_mstate_for(p);
4266     if (!ok_magic(fm)) {
4267       USAGE_ERROR_ACTION(fm, p);
4268       return;
4269     }
4270 #else /* FOOTERS */
4271 #define fm gm
4272 #endif /* FOOTERS */
4273     if (!PREACTION(fm)) {
4274       check_inuse_chunk(fm, p);
4275       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4276         size_t psize = chunksize(p);
4277         mchunkptr next = chunk_plus_offset(p, psize);
4278         if (!pinuse(p)) {
4279           size_t prevsize = p->prev_foot;
4280           if ((prevsize & IS_MMAPPED_BIT) != 0) {
4281             prevsize &= ~IS_MMAPPED_BIT;
4282             psize += prevsize + MMAP_FOOT_PAD;
4283             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4284               fm->footprint -= psize;
4285             goto postaction;
4286           }
4287           else {
4288             mchunkptr prev = chunk_minus_offset(p, prevsize);
4289             psize += prevsize;
4290             p = prev;
4291             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4292               if (p != fm->dv) {
4293                 unlink_chunk(fm, p, prevsize);
4294               }
4295               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4296                 fm->dvsize = psize;
4297                 set_free_with_pinuse(p, psize, next);
4298                 goto postaction;
4299               }
4300             }
4301             else
4302               goto erroraction;
4303           }
4304         }
4305 
4306         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4307           if (!cinuse(next)) {  /* consolidate forward */
4308             if (next == fm->top) {
4309               size_t tsize = fm->topsize += psize;
4310               fm->top = p;
4311               p->head = tsize | PINUSE_BIT;
4312               if (p == fm->dv) {
4313                 fm->dv = 0;
4314                 fm->dvsize = 0;
4315               }
4316               if (should_trim(fm, tsize))
4317                 sys_trim(fm, 0);
4318               goto postaction;
4319             }
4320             else if (next == fm->dv) {
4321               size_t dsize = fm->dvsize += psize;
4322               fm->dv = p;
4323               set_size_and_pinuse_of_free_chunk(p, dsize);
4324               goto postaction;
4325             }
4326             else {
4327               size_t nsize = chunksize(next);
4328               psize += nsize;
4329               unlink_chunk(fm, next, nsize);
4330               set_size_and_pinuse_of_free_chunk(p, psize);
4331               if (p == fm->dv) {
4332                 fm->dvsize = psize;
4333                 goto postaction;
4334               }
4335             }
4336           }
4337           else
4338             set_free_with_pinuse(p, psize, next);
4339           insert_chunk(fm, p, psize);
4340           check_free_chunk(fm, p);
4341           goto postaction;
4342         }
4343       }
4344     erroraction:
4345       USAGE_ERROR_ACTION(fm, p);
4346     postaction:
4347       POSTACTION(fm);
4348     }
4349   }
4350 #if !FOOTERS
4351 #undef fm
4352 #endif /* FOOTERS */
4353 }
4354 
dlcalloc(size_t n_elements,size_t elem_size)4355 void* dlcalloc(size_t n_elements, size_t elem_size) {
4356   void* mem;
4357   size_t req = 0;
4358   if (n_elements != 0) {
4359     req = n_elements * elem_size;
4360     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4361         (req / n_elements != elem_size))
4362       req = MAX_SIZE_T; /* force downstream failure on overflow */
4363   }
4364   mem = dlmalloc(req);
4365   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4366     memset(mem, 0, req);
4367   return mem;
4368 }
4369 
dlrealloc(void * oldmem,size_t bytes)4370 void* dlrealloc(void* oldmem, size_t bytes) {
4371   if (oldmem == 0)
4372     return dlmalloc(bytes);
4373 #ifdef REALLOC_ZERO_BYTES_FREES
4374   if (bytes == 0) {
4375     dlfree(oldmem);
4376     return 0;
4377   }
4378 #endif /* REALLOC_ZERO_BYTES_FREES */
4379   else {
4380 #if ! FOOTERS
4381     mstate m = gm;
4382 #else /* FOOTERS */
4383     mstate m = get_mstate_for(mem2chunk(oldmem));
4384     if (!ok_magic(m)) {
4385       USAGE_ERROR_ACTION(m, oldmem);
4386       return 0;
4387     }
4388 #endif /* FOOTERS */
4389     return internal_realloc(m, oldmem, bytes);
4390   }
4391 }
4392 
dlmemalign(size_t alignment,size_t bytes)4393 void* dlmemalign(size_t alignment, size_t bytes) {
4394   return internal_memalign(gm, alignment, bytes);
4395 }
4396 
dlindependent_calloc(size_t n_elements,size_t elem_size,void * chunks[])4397 void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4398                                  void* chunks[]) {
4399   size_t sz = elem_size; /* serves as 1-element array */
4400   return ialloc(gm, n_elements, &sz, 3, chunks);
4401 }
4402 
dlindependent_comalloc(size_t n_elements,size_t sizes[],void * chunks[])4403 void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4404                                    void* chunks[]) {
4405   return ialloc(gm, n_elements, sizes, 0, chunks);
4406 }
4407 
dlvalloc(size_t bytes)4408 void* dlvalloc(size_t bytes) {
4409   size_t pagesz;
4410   init_mparams();
4411   pagesz = mparams.page_size;
4412   return dlmemalign(pagesz, bytes);
4413 }
4414 
dlpvalloc(size_t bytes)4415 void* dlpvalloc(size_t bytes) {
4416   size_t pagesz;
4417   init_mparams();
4418   pagesz = mparams.page_size;
4419   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4420 }
4421 
dlmalloc_trim(size_t pad)4422 int dlmalloc_trim(size_t pad) {
4423   int result = 0;
4424   if (!PREACTION(gm)) {
4425     result = sys_trim(gm, pad);
4426     POSTACTION(gm);
4427   }
4428   return result;
4429 }
4430 
dlmalloc_footprint(void)4431 size_t dlmalloc_footprint(void) {
4432   return gm->footprint;
4433 }
4434 
dlmalloc_max_footprint(void)4435 size_t dlmalloc_max_footprint(void) {
4436   return gm->max_footprint;
4437 }
4438 
4439 #if !NO_MALLINFO
dlmallinfo(void)4440 struct mallinfo dlmallinfo(void) {
4441   return internal_mallinfo(gm);
4442 }
4443 #endif /* NO_MALLINFO */
4444 
dlmalloc_stats()4445 void dlmalloc_stats() {
4446   internal_malloc_stats(gm);
4447 }
4448 
dlmalloc_usable_size(void * mem)4449 size_t dlmalloc_usable_size(void* mem) {
4450   if (mem != 0) {
4451     mchunkptr p = mem2chunk(mem);
4452     if (cinuse(p))
4453       return chunksize(p) - overhead_for(p);
4454   }
4455   return 0;
4456 }
4457 
dlmallopt(int param_number,int value)4458 int dlmallopt(int param_number, int value) {
4459   return change_mparam(param_number, value);
4460 }
4461 
4462 #endif /* !ONLY_MSPACES */
4463 
4464 /* ----------------------------- user mspaces ---------------------------- */
4465 
4466 #if MSPACES
4467 
init_user_mstate(char * tbase,size_t tsize)4468 static mstate init_user_mstate(char* tbase, size_t tsize) {
4469   size_t msize = pad_request(sizeof(struct malloc_state));
4470   mchunkptr mn;
4471   mchunkptr msp = align_as_chunk(tbase);
4472   mstate m = (mstate)(chunk2mem(msp));
4473   memset(m, 0, msize);
4474   INITIAL_LOCK(&m->mutex);
4475   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
4476   m->seg.base = m->least_addr = tbase;
4477   m->seg.size = m->footprint = m->max_footprint = tsize;
4478   m->magic = mparams.magic;
4479   m->mflags = mparams.default_mflags;
4480   disable_contiguous(m);
4481   init_bins(m);
4482   mn = next_chunk(mem2chunk(m));
4483   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
4484   check_top_chunk(m, m->top);
4485   return m;
4486 }
4487 
create_mspace(size_t capacity,int locked)4488 mspace create_mspace(size_t capacity, int locked) {
4489   mstate m = 0;
4490   size_t msize = pad_request(sizeof(struct malloc_state));
4491   init_mparams(); /* Ensure pagesize etc initialized */
4492 
4493   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4494     size_t rs = ((capacity == 0)? mparams.granularity :
4495                  (capacity + TOP_FOOT_SIZE + msize));
4496     size_t tsize = granularity_align(rs);
4497     char* tbase = (char*)(CALL_MMAP(tsize));
4498     if (tbase != CMFAIL) {
4499       m = init_user_mstate(tbase, tsize);
4500       set_segment_flags(&m->seg, IS_MMAPPED_BIT);
4501       set_lock(m, locked);
4502     }
4503   }
4504   return (mspace)m;
4505 }
4506 
create_mspace_with_base(void * base,size_t capacity,int locked)4507 mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
4508   mstate m = 0;
4509   size_t msize = pad_request(sizeof(struct malloc_state));
4510   init_mparams(); /* Ensure pagesize etc initialized */
4511 
4512   if (capacity > msize + TOP_FOOT_SIZE &&
4513       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4514     m = init_user_mstate((char*)base, capacity);
4515     set_segment_flags(&m->seg, EXTERN_BIT);
4516     set_lock(m, locked);
4517   }
4518   return (mspace)m;
4519 }
4520 
destroy_mspace(mspace msp)4521 size_t destroy_mspace(mspace msp) {
4522   size_t freed = 0;
4523   mstate ms = (mstate)msp;
4524   if (ok_magic(ms)) {
4525     msegmentptr sp = &ms->seg;
4526     while (sp != 0) {
4527       char* base = sp->base;
4528       size_t size = sp->size;
4529       flag_t flag = get_segment_flags(sp);
4530       sp = sp->next;
4531       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
4532           CALL_MUNMAP(base, size) == 0)
4533         freed += size;
4534     }
4535   }
4536   else {
4537     USAGE_ERROR_ACTION(ms,ms);
4538   }
4539   return freed;
4540 }
4541 
4542 /*
4543   mspace versions of routines are near-clones of the global
4544   versions. This is not so nice but better than the alternatives.
4545 */
4546 
4547 
mspace_malloc(mspace msp,size_t bytes)4548 void* mspace_malloc(mspace msp, size_t bytes) {
4549   mstate ms = (mstate)msp;
4550   if (!ok_magic(ms)) {
4551     USAGE_ERROR_ACTION(ms,ms);
4552     return 0;
4553   }
4554   if (!PREACTION(ms)) {
4555     void* mem;
4556     size_t nb;
4557     if (bytes <= MAX_SMALL_REQUEST) {
4558       bindex_t idx;
4559       binmap_t smallbits;
4560       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4561       idx = small_index(nb);
4562       smallbits = ms->smallmap >> idx;
4563 
4564       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4565         mchunkptr b, p;
4566         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
4567         b = smallbin_at(ms, idx);
4568         p = b->fd;
4569         assert(chunksize(p) == small_index2size(idx));
4570         unlink_first_small_chunk(ms, b, p, idx);
4571         set_inuse_and_pinuse(ms, p, small_index2size(idx));
4572         mem = chunk2mem(p);
4573         check_malloced_chunk(ms, mem, nb);
4574         goto postaction;
4575       }
4576 
4577       else if (nb > ms->dvsize) {
4578         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4579           mchunkptr b, p, r;
4580           size_t rsize;
4581           bindex_t i;
4582           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4583           binmap_t leastbit = least_bit(leftbits);
4584           compute_bit2idx(leastbit, i);
4585           b = smallbin_at(ms, i);
4586           p = b->fd;
4587           assert(chunksize(p) == small_index2size(i));
4588           unlink_first_small_chunk(ms, b, p, i);
4589           rsize = small_index2size(i) - nb;
4590           /* Fit here cannot be remainderless if 4byte sizes */
4591           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4592             set_inuse_and_pinuse(ms, p, small_index2size(i));
4593           else {
4594             set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4595             r = chunk_plus_offset(p, nb);
4596             set_size_and_pinuse_of_free_chunk(r, rsize);
4597             replace_dv(ms, r, rsize);
4598           }
4599           mem = chunk2mem(p);
4600           check_malloced_chunk(ms, mem, nb);
4601           goto postaction;
4602         }
4603 
4604         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
4605           check_malloced_chunk(ms, mem, nb);
4606           goto postaction;
4607         }
4608       }
4609     }
4610     else if (bytes >= MAX_REQUEST)
4611       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4612     else {
4613       nb = pad_request(bytes);
4614       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
4615         check_malloced_chunk(ms, mem, nb);
4616         goto postaction;
4617       }
4618     }
4619 
4620     if (nb <= ms->dvsize) {
4621       size_t rsize = ms->dvsize - nb;
4622       mchunkptr p = ms->dv;
4623       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4624         mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
4625         ms->dvsize = rsize;
4626         set_size_and_pinuse_of_free_chunk(r, rsize);
4627         set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4628       }
4629       else { /* exhaust dv */
4630         size_t dvs = ms->dvsize;
4631         ms->dvsize = 0;
4632         ms->dv = 0;
4633         set_inuse_and_pinuse(ms, p, dvs);
4634       }
4635       mem = chunk2mem(p);
4636       check_malloced_chunk(ms, mem, nb);
4637       goto postaction;
4638     }
4639 
4640     else if (nb < ms->topsize) { /* Split top */
4641       size_t rsize = ms->topsize -= nb;
4642       mchunkptr p = ms->top;
4643       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4644       r->head = rsize | PINUSE_BIT;
4645       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4646       mem = chunk2mem(p);
4647       check_top_chunk(ms, ms->top);
4648       check_malloced_chunk(ms, mem, nb);
4649       goto postaction;
4650     }
4651 
4652     mem = sys_alloc(ms, nb);
4653 
4654   postaction:
4655     POSTACTION(ms);
4656     return mem;
4657   }
4658 
4659   return 0;
4660 }
4661 
mspace_free(mspace msp,void * mem)4662 void mspace_free(mspace msp, void* mem) {
4663   if (mem != 0) {
4664     mchunkptr p  = mem2chunk(mem);
4665 #if FOOTERS
4666     mstate fm = get_mstate_for(p);
4667 #else /* FOOTERS */
4668     mstate fm = (mstate)msp;
4669 #endif /* FOOTERS */
4670     if (!ok_magic(fm)) {
4671       USAGE_ERROR_ACTION(fm, p);
4672       return;
4673     }
4674     if (!PREACTION(fm)) {
4675       check_inuse_chunk(fm, p);
4676       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4677         size_t psize = chunksize(p);
4678         mchunkptr next = chunk_plus_offset(p, psize);
4679         if (!pinuse(p)) {
4680           size_t prevsize = p->prev_foot;
4681           if ((prevsize & IS_MMAPPED_BIT) != 0) {
4682             prevsize &= ~IS_MMAPPED_BIT;
4683             psize += prevsize + MMAP_FOOT_PAD;
4684             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4685               fm->footprint -= psize;
4686             goto postaction;
4687           }
4688           else {
4689             mchunkptr prev = chunk_minus_offset(p, prevsize);
4690             psize += prevsize;
4691             p = prev;
4692             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4693               if (p != fm->dv) {
4694                 unlink_chunk(fm, p, prevsize);
4695               }
4696               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4697                 fm->dvsize = psize;
4698                 set_free_with_pinuse(p, psize, next);
4699                 goto postaction;
4700               }
4701             }
4702             else
4703               goto erroraction;
4704           }
4705         }
4706 
4707         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4708           if (!cinuse(next)) {  /* consolidate forward */
4709             if (next == fm->top) {
4710               size_t tsize = fm->topsize += psize;
4711               fm->top = p;
4712               p->head = tsize | PINUSE_BIT;
4713               if (p == fm->dv) {
4714                 fm->dv = 0;
4715                 fm->dvsize = 0;
4716               }
4717               if (should_trim(fm, tsize))
4718                 sys_trim(fm, 0);
4719               goto postaction;
4720             }
4721             else if (next == fm->dv) {
4722               size_t dsize = fm->dvsize += psize;
4723               fm->dv = p;
4724               set_size_and_pinuse_of_free_chunk(p, dsize);
4725               goto postaction;
4726             }
4727             else {
4728               size_t nsize = chunksize(next);
4729               psize += nsize;
4730               unlink_chunk(fm, next, nsize);
4731               set_size_and_pinuse_of_free_chunk(p, psize);
4732               if (p == fm->dv) {
4733                 fm->dvsize = psize;
4734                 goto postaction;
4735               }
4736             }
4737           }
4738           else
4739             set_free_with_pinuse(p, psize, next);
4740           insert_chunk(fm, p, psize);
4741           check_free_chunk(fm, p);
4742           goto postaction;
4743         }
4744       }
4745     erroraction:
4746       USAGE_ERROR_ACTION(fm, p);
4747     postaction:
4748       POSTACTION(fm);
4749     }
4750   }
4751 }
4752 
mspace_calloc(mspace msp,size_t n_elements,size_t elem_size)4753 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4754   void* mem;
4755   size_t req = 0;
4756   mstate ms = (mstate)msp;
4757   if (!ok_magic(ms)) {
4758     USAGE_ERROR_ACTION(ms,ms);
4759     return 0;
4760   }
4761   if (n_elements != 0) {
4762     req = n_elements * elem_size;
4763     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4764         (req / n_elements != elem_size))
4765       req = MAX_SIZE_T; /* force downstream failure on overflow */
4766   }
4767   mem = internal_malloc(ms, req);
4768   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4769     memset(mem, 0, req);
4770   return mem;
4771 }
4772 
mspace_realloc(mspace msp,void * oldmem,size_t bytes)4773 void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4774   if (oldmem == 0)
4775     return mspace_malloc(msp, bytes);
4776 #ifdef REALLOC_ZERO_BYTES_FREES
4777   if (bytes == 0) {
4778     mspace_free(msp, oldmem);
4779     return 0;
4780   }
4781 #endif /* REALLOC_ZERO_BYTES_FREES */
4782   else {
4783 #if FOOTERS
4784     mchunkptr p  = mem2chunk(oldmem);
4785     mstate ms = get_mstate_for(p);
4786 #else /* FOOTERS */
4787     mstate ms = (mstate)msp;
4788 #endif /* FOOTERS */
4789     if (!ok_magic(ms)) {
4790       USAGE_ERROR_ACTION(ms,ms);
4791       return 0;
4792     }
4793     return internal_realloc(ms, oldmem, bytes);
4794   }
4795 }
4796 
mspace_memalign(mspace msp,size_t alignment,size_t bytes)4797 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4798   mstate ms = (mstate)msp;
4799   if (!ok_magic(ms)) {
4800     USAGE_ERROR_ACTION(ms,ms);
4801     return 0;
4802   }
4803   return internal_memalign(ms, alignment, bytes);
4804 }
4805 
mspace_independent_calloc(mspace msp,size_t n_elements,size_t elem_size,void * chunks[])4806 void** mspace_independent_calloc(mspace msp, size_t n_elements,
4807                                  size_t elem_size, void* chunks[]) {
4808   size_t sz = elem_size; /* serves as 1-element array */
4809   mstate ms = (mstate)msp;
4810   if (!ok_magic(ms)) {
4811     USAGE_ERROR_ACTION(ms,ms);
4812     return 0;
4813   }
4814   return ialloc(ms, n_elements, &sz, 3, chunks);
4815 }
4816 
mspace_independent_comalloc(mspace msp,size_t n_elements,size_t sizes[],void * chunks[])4817 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4818                                    size_t sizes[], void* chunks[]) {
4819   mstate ms = (mstate)msp;
4820   if (!ok_magic(ms)) {
4821     USAGE_ERROR_ACTION(ms,ms);
4822     return 0;
4823   }
4824   return ialloc(ms, n_elements, sizes, 0, chunks);
4825 }
4826 
mspace_trim(mspace msp,size_t pad)4827 int mspace_trim(mspace msp, size_t pad) {
4828   int result = 0;
4829   mstate ms = (mstate)msp;
4830   if (ok_magic(ms)) {
4831     if (!PREACTION(ms)) {
4832       result = sys_trim(ms, pad);
4833       POSTACTION(ms);
4834     }
4835   }
4836   else {
4837     USAGE_ERROR_ACTION(ms,ms);
4838   }
4839   return result;
4840 }
4841 
mspace_malloc_stats(mspace msp)4842 void mspace_malloc_stats(mspace msp) {
4843   mstate ms = (mstate)msp;
4844   if (ok_magic(ms)) {
4845     internal_malloc_stats(ms);
4846   }
4847   else {
4848     USAGE_ERROR_ACTION(ms,ms);
4849   }
4850 }
4851 
mspace_footprint(mspace msp)4852 size_t mspace_footprint(mspace msp) {
4853   size_t result;
4854   mstate ms = (mstate)msp;
4855   if (ok_magic(ms)) {
4856     result = ms->footprint;
4857   }
4858   USAGE_ERROR_ACTION(ms,ms);
4859   return result;
4860 }
4861 
4862 
mspace_max_footprint(mspace msp)4863 size_t mspace_max_footprint(mspace msp) {
4864   size_t result;
4865   mstate ms = (mstate)msp;
4866   if (ok_magic(ms)) {
4867     result = ms->max_footprint;
4868   }
4869   USAGE_ERROR_ACTION(ms,ms);
4870   return result;
4871 }
4872 
4873 
4874 #if !NO_MALLINFO
mspace_mallinfo(mspace msp)4875 struct mallinfo mspace_mallinfo(mspace msp) {
4876   mstate ms = (mstate)msp;
4877   if (!ok_magic(ms)) {
4878     USAGE_ERROR_ACTION(ms,ms);
4879   }
4880   return internal_mallinfo(ms);
4881 }
4882 #endif /* NO_MALLINFO */
4883 
mspace_mallopt(int param_number,int value)4884 int mspace_mallopt(int param_number, int value) {
4885   return change_mparam(param_number, value);
4886 }
4887 
4888 #endif /* MSPACES */
4889 
4890 /* -------------------- Alternative MORECORE functions ------------------- */
4891 
4892 /*
4893   Guidelines for creating a custom version of MORECORE:
4894 
4895   * For best performance, MORECORE should allocate in multiples of pagesize.
4896   * MORECORE may allocate more memory than requested. (Or even less,
4897       but this will usually result in a malloc failure.)
4898   * MORECORE must not allocate memory when given argument zero, but
4899       instead return one past the end address of memory from previous
4900       nonzero call.
4901   * For best performance, consecutive calls to MORECORE with positive
4902       arguments should return increasing addresses, indicating that
4903       space has been contiguously extended.
4904   * Even though consecutive calls to MORECORE need not return contiguous
4905       addresses, it must be OK for malloc'ed chunks to span multiple
4906       regions in those cases where they do happen to be contiguous.
4907   * MORECORE need not handle negative arguments -- it may instead
4908       just return MFAIL when given negative arguments.
4909       Negative arguments are always multiples of pagesize. MORECORE
4910       must not misinterpret negative args as large positive unsigned
4911       args. You can suppress all such calls from even occurring by defining
4912       MORECORE_CANNOT_TRIM,
4913 
4914   As an example alternative MORECORE, here is a custom allocator
4915   kindly contributed for pre-OSX macOS.  It uses virtually but not
4916   necessarily physically contiguous non-paged memory (locked in,
4917   present and won't get swapped out).  You can use it by uncommenting
4918   this section, adding some #includes, and setting up the appropriate
4919   defines above:
4920 
4921       #define MORECORE osMoreCore
4922 
4923   There is also a shutdown routine that should somehow be called for
4924   cleanup upon program exit.
4925 
4926   #define MAX_POOL_ENTRIES 100
4927   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
4928   static int next_os_pool;
4929   void *our_os_pools[MAX_POOL_ENTRIES];
4930 
4931   void *osMoreCore(int size)
4932   {
4933     void *ptr = 0;
4934     static void *sbrk_top = 0;
4935 
4936     if (size > 0)
4937     {
4938       if (size < MINIMUM_MORECORE_SIZE)
4939          size = MINIMUM_MORECORE_SIZE;
4940       if (CurrentExecutionLevel() == kTaskLevel)
4941          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4942       if (ptr == 0)
4943       {
4944         return (void *) MFAIL;
4945       }
4946       // save ptrs so they can be freed during cleanup
4947       our_os_pools[next_os_pool] = ptr;
4948       next_os_pool++;
4949       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4950       sbrk_top = (char *) ptr + size;
4951       return ptr;
4952     }
4953     else if (size < 0)
4954     {
4955       // we don't currently support shrink behavior
4956       return (void *) MFAIL;
4957     }
4958     else
4959     {
4960       return sbrk_top;
4961     }
4962   }
4963 
4964   // cleanup any allocated memory pools
4965   // called as last thing before shutting down driver
4966 
4967   void osCleanupMem(void)
4968   {
4969     void **ptr;
4970 
4971     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4972       if (*ptr)
4973       {
4974          PoolDeallocate(*ptr);
4975          *ptr = 0;
4976       }
4977   }
4978 
4979 */
4980 
4981 
4982 /* -----------------------------------------------------------------------
4983 History:
4984     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
4985       * Add max_footprint functions
4986       * Ensure all appropriate literals are size_t
4987       * Fix conditional compilation problem for some #define settings
4988       * Avoid concatenating segments with the one provided
4989         in create_mspace_with_base
4990       * Rename some variables to avoid compiler shadowing warnings
4991       * Use explicit lock initialization.
4992       * Better handling of sbrk interference.
4993       * Simplify and fix segment insertion, trimming and mspace_destroy
4994       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4995       * Thanks especially to Dennis Flanagan for help on these.
4996 
4997     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
4998       * Fix memalign brace error.
4999 
5000     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
5001       * Fix improper #endif nesting in C++
5002       * Add explicit casts needed for C++
5003 
5004     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
5005       * Use trees for large bins
5006       * Support mspaces
5007       * Use segments to unify sbrk-based and mmap-based system allocation,
5008         removing need for emulation on most platforms without sbrk.
5009       * Default safety checks
5010       * Optional footer checks. Thanks to William Robertson for the idea.
5011       * Internal code refactoring
5012       * Incorporate suggestions and platform-specific changes.
5013         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
5014         Aaron Bachmann,  Emery Berger, and others.
5015       * Speed up non-fastbin processing enough to remove fastbins.
5016       * Remove useless cfree() to avoid conflicts with other apps.
5017       * Remove internal memcpy, memset. Compilers handle builtins better.
5018       * Remove some options that no one ever used and rename others.
5019 
5020     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
5021       * Fix malloc_state bitmap array misdeclaration
5022 
5023     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
5024       * Allow tuning of FIRST_SORTED_BIN_SIZE
5025       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
5026       * Better detection and support for non-contiguousness of MORECORE.
5027         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
5028       * Bypass most of malloc if no frees. Thanks To Emery Berger.
5029       * Fix freeing of old top non-contiguous chunk im sysmalloc.
5030       * Raised default trim and map thresholds to 256K.
5031       * Fix mmap-related #defines. Thanks to Lubos Lunak.
5032       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
5033       * Branch-free bin calculation
5034       * Default trim and mmap thresholds now 256K.
5035 
5036     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
5037       * Introduce independent_comalloc and independent_calloc.
5038         Thanks to Michael Pachos for motivation and help.
5039       * Make optional .h file available
5040       * Allow > 2GB requests on 32bit systems.
5041       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
5042         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
5043         and Anonymous.
5044       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
5045         helping test this.)
5046       * memalign: check alignment arg
5047       * realloc: don't try to shift chunks backwards, since this
5048         leads to  more fragmentation in some programs and doesn't
5049         seem to help in any others.
5050       * Collect all cases in malloc requiring system memory into sysmalloc
5051       * Use mmap as backup to sbrk
5052       * Place all internal state in malloc_state
5053       * Introduce fastbins (although similar to 2.5.1)
5054       * Many minor tunings and cosmetic improvements
5055       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
5056       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
5057         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
5058       * Include errno.h to support default failure action.
5059 
5060     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
5061       * return null for negative arguments
5062       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
5063          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
5064           (e.g. WIN32 platforms)
5065          * Cleanup header file inclusion for WIN32 platforms
5066          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
5067          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
5068            memory allocation routines
5069          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
5070          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
5071            usage of 'assert' in non-WIN32 code
5072          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
5073            avoid infinite loop
5074       * Always call 'fREe()' rather than 'free()'
5075 
5076     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
5077       * Fixed ordering problem with boundary-stamping
5078 
5079     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
5080       * Added pvalloc, as recommended by H.J. Liu
5081       * Added 64bit pointer support mainly from Wolfram Gloger
5082       * Added anonymously donated WIN32 sbrk emulation
5083       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
5084       * malloc_extend_top: fix mask error that caused wastage after
5085         foreign sbrks
5086       * Add linux mremap support code from HJ Liu
5087 
5088     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
5089       * Integrated most documentation with the code.
5090       * Add support for mmap, with help from
5091         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5092       * Use last_remainder in more cases.
5093       * Pack bins using idea from  colin@nyx10.cs.du.edu
5094       * Use ordered bins instead of best-fit threshold
5095       * Eliminate block-local decls to simplify tracing and debugging.
5096       * Support another case of realloc via move into top
5097       * Fix error occurring when initial sbrk_base not word-aligned.
5098       * Rely on page size for units instead of SBRK_UNIT to
5099         avoid surprises about sbrk alignment conventions.
5100       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5101         (raymond@es.ele.tue.nl) for the suggestion.
5102       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5103       * More precautions for cases where other routines call sbrk,
5104         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5105       * Added macros etc., allowing use in linux libc from
5106         H.J. Lu (hjl@gnu.ai.mit.edu)
5107       * Inverted this history list
5108 
5109     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
5110       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5111       * Removed all preallocation code since under current scheme
5112         the work required to undo bad preallocations exceeds
5113         the work saved in good cases for most test programs.
5114       * No longer use return list or unconsolidated bins since
5115         no scheme using them consistently outperforms those that don't
5116         given above changes.
5117       * Use best fit for very large chunks to prevent some worst-cases.
5118       * Added some support for debugging
5119 
5120     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
5121       * Removed footers when chunks are in use. Thanks to
5122         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5123 
5124     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
5125       * Added malloc_trim, with help from Wolfram Gloger
5126         (wmglo@Dent.MED.Uni-Muenchen.DE).
5127 
5128     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
5129 
5130     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
5131       * realloc: try to expand in both directions
5132       * malloc: swap order of clean-bin strategy;
5133       * realloc: only conditionally expand backwards
5134       * Try not to scavenge used bins
5135       * Use bin counts as a guide to preallocation
5136       * Occasionally bin return list chunks in first scan
5137       * Add a few optimizations from colin@nyx10.cs.du.edu
5138 
5139     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
5140       * faster bin computation & slightly different binning
5141       * merged all consolidations to one part of malloc proper
5142          (eliminating old malloc_find_space & malloc_clean_bin)
5143       * Scan 2 returns chunks (not just 1)
5144       * Propagate failure in realloc if malloc returns 0
5145       * Add stuff to allow compilation on non-ANSI compilers
5146           from kpv@research.att.com
5147 
5148     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
5149       * removed potential for odd address access in prev_chunk
5150       * removed dependency on getpagesize.h
5151       * misc cosmetics and a bit more internal documentation
5152       * anticosmetics: mangled names in macros to evade debugger strangeness
5153       * tested on sparc, hp-700, dec-mips, rs6000
5154           with gcc & native cc (hp, dec only) allowing
5155           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5156 
5157     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
5158       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5159          structure of old version,  but most details differ.)
5160 
5161 */
5162