1 /*
2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5  */
6 
7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
8 
9 /*
10  *  See private.h for the more commonly used macro versions.
11  */
12 
13 #include	<stdio.h>
14 #include	<assert.h>
15 
16 #include	"private.h"
17 #include	"gsm.h"
18 #include	"proto.h"
19 
20 #define	saturate(x) 	\
21 	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
22 
23 word gsm_add P2((a,b), word a, word b)
24 {
25 	longword sum = (longword)a + (longword)b;
26 	return saturate(sum);
27 }
28 
29 word gsm_sub P2((a,b), word a, word b)
30 {
31 	longword diff = (longword)a - (longword)b;
32 	return saturate(diff);
33 }
34 
35 word gsm_mult P2((a,b), word a, word b)
36 {
37 	if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
38 	else return SASR( (longword)a * (longword)b, 15 );
39 }
40 
41 word gsm_mult_r P2((a,b), word a, word b)
42 {
43 	if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
44 	else {
45 		longword prod = (longword)a * (longword)b + 16384;
46 		prod >>= 15;
47 		return prod & 0xFFFF;
48 	}
49 }
50 
51 word gsm_abs P1((a), word a)
52 {
53 	return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
54 }
55 
56 longword gsm_L_mult P2((a,b),word a, word b)
57 {
58 	assert( a != MIN_WORD || b != MIN_WORD );
59 	return ((longword)a * (longword)b) << 1;
60 }
61 
62 longword gsm_L_add P2((a,b), longword a, longword b)
63 {
64 	if (a < 0) {
65 		if (b >= 0) return a + b;
66 		else {
67 			ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
68 			return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
69 		}
70 	}
71 	else if (b <= 0) return a + b;
72 	else {
73 		ulongword A = (ulongword)a + (ulongword)b;
74 		return A > MAX_LONGWORD ? MAX_LONGWORD : A;
75 	}
76 }
77 
78 longword gsm_L_sub P2((a,b), longword a, longword b)
79 {
80 	if (a >= 0) {
81 		if (b >= 0) return a - b;
82 		else {
83 			/* a>=0, b<0 */
84 
85 			ulongword A = (ulongword)a + -(b + 1);
86 			return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
87 		}
88 	}
89 	else if (b <= 0) return a - b;
90 	else {
91 		/* a<0, b>0 */
92 
93 		ulongword A = (ulongword)-(a + 1) + b;
94 		return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
95 	}
96 }
97 
98 static unsigned char const bitoff[ 256 ] = {
99 	 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
100 	 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
101 	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
102 	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
103 	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
104 	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
105 	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
106 	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
107 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
108 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
110 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114 	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115 };
116 
117 word gsm_norm P1((a), longword a )
118 /*
119  * the number of left shifts needed to normalize the 32 bit
120  * variable L_var1 for positive values on the interval
121  *
122  * with minimum of
123  * minimum of 1073741824  (01000000000000000000000000000000) and
124  * maximum of 2147483647  (01111111111111111111111111111111)
125  *
126  *
127  * and for negative values on the interval with
128  * minimum of -2147483648 (-10000000000000000000000000000000) and
129  * maximum of -1073741824 ( -1000000000000000000000000000000).
130  *
131  * in order to normalize the result, the following
132  * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
133  *
134  * (That's 'ffs', only from the left, not the right..)
135  */
136 {
137 	assert(a != 0);
138 
139 	if (a < 0) {
140 		if (a <= -1073741824) return 0;
141 		a = ~a;
142 	}
143 
144 	return    a & 0xffff0000
145 		? ( a & 0xff000000
146 		  ?  -1 + bitoff[ 0xFF & (a >> 24) ]
147 		  :   7 + bitoff[ 0xFF & (a >> 16) ] )
148 		: ( a & 0xff00
149 		  ?  15 + bitoff[ 0xFF & (a >> 8) ]
150 		  :  23 + bitoff[ 0xFF & a ] );
151 }
152 
153 longword gsm_L_asl P2((a,n), longword a, int n)
154 {
155 	if (n >= 32) return 0;
156 	if (n <= -32) return -(a < 0);
157 	if (n < 0) return gsm_L_asr(a, -n);
158 	return a << n;
159 }
160 
161 word gsm_asl P2((a,n), word a, int n)
162 {
163 	if (n >= 16) return 0;
164 	if (n <= -16) return -(a < 0);
165 	if (n < 0) return gsm_asr(a, -n);
166 	return a << n;
167 }
168 
169 longword gsm_L_asr P2((a,n), longword a, int n)
170 {
171 	if (n >= 32) return -(a < 0);
172 	if (n <= -32) return 0;
173 	if (n < 0) return a << -n;
174 
175 #	ifdef	SASR
176 		return a >> n;
177 #	else
178 		if (a >= 0) return a >> n;
179 		else return -(longword)( -(ulongword)a >> n );
180 #	endif
181 }
182 
183 word gsm_asr P2((a,n), word a, int n)
184 {
185 	if (n >= 16) return -(a < 0);
186 	if (n <= -16) return 0;
187 	if (n < 0) return a << -n;
188 
189 #	ifdef	SASR
190 		return a >> n;
191 #	else
192 		if (a >= 0) return a >> n;
193 		else return -(word)( -(uword)a >> n );
194 #	endif
195 }
196 
197 /*
198  *  (From p. 46, end of section 4.2.5)
199  *
200  *  NOTE: The following lines gives [sic] one correct implementation
201  *  	  of the div(num, denum) arithmetic operation.  Compute div
202  *        which is the integer division of num by denum: with denum
203  *	  >= num > 0
204  */
205 
206 word gsm_div P2((num,denum), word num, word denum)
207 {
208 	longword	L_num   = num;
209 	longword	L_denum = denum;
210 	word		div 	= 0;
211 	int		k 	= 15;
212 
213 	/* The parameter num sometimes becomes zero.
214 	 * Although this is explicitly guarded against in 4.2.5,
215 	 * we assume that the result should then be zero as well.
216 	 */
217 
218 	/* assert(num != 0); */
219 
220 	assert(num >= 0 && denum >= num);
221 	if (num == 0)
222 	    return 0;
223 
224 	while (k--) {
225 		div   <<= 1;
226 		L_num <<= 1;
227 
228 		if (L_num >= L_denum) {
229 			L_num -= L_denum;
230 			div++;
231 		}
232 	}
233 
234 	return div;
235 }
236