1; 2; jidctint.asm - accurate integer IDCT (64-bit AVX2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2009, 2016, 2018, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a slow-but-accurate integer implementation of the 18; inverse DCT (Discrete Cosine Transform). The following code is based 19; directly on the IJG's original jidctint.c; see the jidctint.c for 20; more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%define CONST_BITS 13 30%define PASS1_BITS 2 31 32%define DESCALE_P1 (CONST_BITS - PASS1_BITS) 33%define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) 34 35%if CONST_BITS == 13 36F_0_298 equ 2446 ; FIX(0.298631336) 37F_0_390 equ 3196 ; FIX(0.390180644) 38F_0_541 equ 4433 ; FIX(0.541196100) 39F_0_765 equ 6270 ; FIX(0.765366865) 40F_0_899 equ 7373 ; FIX(0.899976223) 41F_1_175 equ 9633 ; FIX(1.175875602) 42F_1_501 equ 12299 ; FIX(1.501321110) 43F_1_847 equ 15137 ; FIX(1.847759065) 44F_1_961 equ 16069 ; FIX(1.961570560) 45F_2_053 equ 16819 ; FIX(2.053119869) 46F_2_562 equ 20995 ; FIX(2.562915447) 47F_3_072 equ 25172 ; FIX(3.072711026) 48%else 49; NASM cannot do compile-time arithmetic on floating-point constants. 50%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) 51F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) 52F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) 53F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) 54F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) 55F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) 56F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) 57F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) 58F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) 59F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) 60F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) 61F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) 62F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) 63%endif 64 65; -------------------------------------------------------------------------- 66; In-place 8x8x16-bit inverse matrix transpose using AVX2 instructions 67; %1-%4: Input/output registers 68; %5-%8: Temp registers 69 70%macro dotranspose 8 71 ; %5=(00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71) 72 ; %6=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) 73 ; %7=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) 74 ; %8=(07 17 27 37 47 57 67 77 06 16 26 36 46 56 66 76) 75 76 vpermq %5, %1, 0xD8 77 vpermq %6, %2, 0x72 78 vpermq %7, %3, 0xD8 79 vpermq %8, %4, 0x72 80 ; transpose coefficients(phase 1) 81 ; %5=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) 82 ; %6=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) 83 ; %7=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) 84 ; %8=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) 85 86 vpunpcklwd %1, %5, %6 87 vpunpckhwd %2, %5, %6 88 vpunpcklwd %3, %7, %8 89 vpunpckhwd %4, %7, %8 90 ; transpose coefficients(phase 2) 91 ; %1=(00 02 10 12 20 22 30 32 40 42 50 52 60 62 70 72) 92 ; %2=(01 03 11 13 21 23 31 33 41 43 51 53 61 63 71 73) 93 ; %3=(04 06 14 16 24 26 34 36 44 46 54 56 64 66 74 76) 94 ; %4=(05 07 15 17 25 27 35 37 45 47 55 57 65 67 75 77) 95 96 vpunpcklwd %5, %1, %2 97 vpunpcklwd %6, %3, %4 98 vpunpckhwd %7, %1, %2 99 vpunpckhwd %8, %3, %4 100 ; transpose coefficients(phase 3) 101 ; %5=(00 01 02 03 10 11 12 13 40 41 42 43 50 51 52 53) 102 ; %6=(04 05 06 07 14 15 16 17 44 45 46 47 54 55 56 57) 103 ; %7=(20 21 22 23 30 31 32 33 60 61 62 63 70 71 72 73) 104 ; %8=(24 25 26 27 34 35 36 37 64 65 66 67 74 75 76 77) 105 106 vpunpcklqdq %1, %5, %6 107 vpunpckhqdq %2, %5, %6 108 vpunpcklqdq %3, %7, %8 109 vpunpckhqdq %4, %7, %8 110 ; transpose coefficients(phase 4) 111 ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) 112 ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) 113 ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) 114 ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) 115%endmacro 116 117; -------------------------------------------------------------------------- 118; In-place 8x8x16-bit slow integer inverse DCT using AVX2 instructions 119; %1-%4: Input/output registers 120; %5-%12: Temp registers 121; %9: Pass (1 or 2) 122 123%macro dodct 13 124 ; -- Even part 125 126 ; (Original) 127 ; z1 = (z2 + z3) * 0.541196100; 128 ; tmp2 = z1 + z3 * -1.847759065; 129 ; tmp3 = z1 + z2 * 0.765366865; 130 ; 131 ; (This implementation) 132 ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); 133 ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; 134 135 vperm2i128 %6, %3, %3, 0x01 ; %6=in6_2 136 vpunpcklwd %5, %3, %6 ; %5=in26_62L 137 vpunpckhwd %6, %3, %6 ; %6=in26_62H 138 vpmaddwd %5, %5, [rel PW_F130_F054_MF130_F054] ; %5=tmp3_2L 139 vpmaddwd %6, %6, [rel PW_F130_F054_MF130_F054] ; %6=tmp3_2H 140 141 vperm2i128 %7, %1, %1, 0x01 ; %7=in4_0 142 vpsignw %1, %1, [rel PW_1_NEG1] 143 vpaddw %7, %7, %1 ; %7=(in0+in4)_(in0-in4) 144 145 vpxor %1, %1, %1 146 vpunpcklwd %8, %1, %7 ; %8=tmp0_1L 147 vpunpckhwd %1, %1, %7 ; %1=tmp0_1H 148 vpsrad %8, %8, (16-CONST_BITS) ; vpsrad %8,16 & vpslld %8,CONST_BITS 149 vpsrad %1, %1, (16-CONST_BITS) ; vpsrad %1,16 & vpslld %1,CONST_BITS 150 151 vpsubd %11, %8, %5 ; %11=tmp0_1L-tmp3_2L=tmp13_12L 152 vpaddd %9, %8, %5 ; %9=tmp0_1L+tmp3_2L=tmp10_11L 153 vpsubd %12, %1, %6 ; %12=tmp0_1H-tmp3_2H=tmp13_12H 154 vpaddd %10, %1, %6 ; %10=tmp0_1H+tmp3_2H=tmp10_11H 155 156 ; -- Odd part 157 158 vpaddw %1, %4, %2 ; %1=in7_5+in3_1=z3_4 159 160 ; (Original) 161 ; z5 = (z3 + z4) * 1.175875602; 162 ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; 163 ; z3 += z5; z4 += z5; 164 ; 165 ; (This implementation) 166 ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; 167 ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); 168 169 vperm2i128 %8, %1, %1, 0x01 ; %8=z4_3 170 vpunpcklwd %7, %1, %8 ; %7=z34_43L 171 vpunpckhwd %8, %1, %8 ; %8=z34_43H 172 vpmaddwd %7, %7, [rel PW_MF078_F117_F078_F117] ; %7=z3_4L 173 vpmaddwd %8, %8, [rel PW_MF078_F117_F078_F117] ; %8=z3_4H 174 175 ; (Original) 176 ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; 177 ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; 178 ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; 179 ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; 180 ; tmp0 += z1 + z3; tmp1 += z2 + z4; 181 ; tmp2 += z2 + z3; tmp3 += z1 + z4; 182 ; 183 ; (This implementation) 184 ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; 185 ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; 186 ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); 187 ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); 188 ; tmp0 += z3; tmp1 += z4; 189 ; tmp2 += z3; tmp3 += z4; 190 191 vperm2i128 %2, %2, %2, 0x01 ; %2=in1_3 192 vpunpcklwd %3, %4, %2 ; %3=in71_53L 193 vpunpckhwd %4, %4, %2 ; %4=in71_53H 194 195 vpmaddwd %5, %3, [rel PW_MF060_MF089_MF050_MF256] ; %5=tmp0_1L 196 vpmaddwd %6, %4, [rel PW_MF060_MF089_MF050_MF256] ; %6=tmp0_1H 197 vpaddd %5, %5, %7 ; %5=tmp0_1L+z3_4L=tmp0_1L 198 vpaddd %6, %6, %8 ; %6=tmp0_1H+z3_4H=tmp0_1H 199 200 vpmaddwd %3, %3, [rel PW_MF089_F060_MF256_F050] ; %3=tmp3_2L 201 vpmaddwd %4, %4, [rel PW_MF089_F060_MF256_F050] ; %4=tmp3_2H 202 vperm2i128 %7, %7, %7, 0x01 ; %7=z4_3L 203 vperm2i128 %8, %8, %8, 0x01 ; %8=z4_3H 204 vpaddd %7, %3, %7 ; %7=tmp3_2L+z4_3L=tmp3_2L 205 vpaddd %8, %4, %8 ; %8=tmp3_2H+z4_3H=tmp3_2H 206 207 ; -- Final output stage 208 209 vpaddd %1, %9, %7 ; %1=tmp10_11L+tmp3_2L=data0_1L 210 vpaddd %2, %10, %8 ; %2=tmp10_11H+tmp3_2H=data0_1H 211 vpaddd %1, %1, [rel PD_DESCALE_P %+ %13] 212 vpaddd %2, %2, [rel PD_DESCALE_P %+ %13] 213 vpsrad %1, %1, DESCALE_P %+ %13 214 vpsrad %2, %2, DESCALE_P %+ %13 215 vpackssdw %1, %1, %2 ; %1=data0_1 216 217 vpsubd %3, %9, %7 ; %3=tmp10_11L-tmp3_2L=data7_6L 218 vpsubd %4, %10, %8 ; %4=tmp10_11H-tmp3_2H=data7_6H 219 vpaddd %3, %3, [rel PD_DESCALE_P %+ %13] 220 vpaddd %4, %4, [rel PD_DESCALE_P %+ %13] 221 vpsrad %3, %3, DESCALE_P %+ %13 222 vpsrad %4, %4, DESCALE_P %+ %13 223 vpackssdw %4, %3, %4 ; %4=data7_6 224 225 vpaddd %7, %11, %5 ; %7=tmp13_12L+tmp0_1L=data3_2L 226 vpaddd %8, %12, %6 ; %8=tmp13_12H+tmp0_1H=data3_2H 227 vpaddd %7, %7, [rel PD_DESCALE_P %+ %13] 228 vpaddd %8, %8, [rel PD_DESCALE_P %+ %13] 229 vpsrad %7, %7, DESCALE_P %+ %13 230 vpsrad %8, %8, DESCALE_P %+ %13 231 vpackssdw %2, %7, %8 ; %2=data3_2 232 233 vpsubd %7, %11, %5 ; %7=tmp13_12L-tmp0_1L=data4_5L 234 vpsubd %8, %12, %6 ; %8=tmp13_12H-tmp0_1H=data4_5H 235 vpaddd %7, %7, [rel PD_DESCALE_P %+ %13] 236 vpaddd %8, %8, [rel PD_DESCALE_P %+ %13] 237 vpsrad %7, %7, DESCALE_P %+ %13 238 vpsrad %8, %8, DESCALE_P %+ %13 239 vpackssdw %3, %7, %8 ; %3=data4_5 240%endmacro 241 242; -------------------------------------------------------------------------- 243 SECTION SEG_CONST 244 245 alignz 32 246 GLOBAL_DATA(jconst_idct_islow_avx2) 247 248EXTN(jconst_idct_islow_avx2): 249 250PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 251 times 4 dw (F_0_541 - F_1_847), F_0_541 252PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 253 times 4 dw (F_1_175 - F_0_390), F_1_175 254PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 255 times 4 dw (F_2_053 - F_2_562), -F_2_562 256PW_MF089_F060_MF256_F050 times 4 dw -F_0_899, (F_1_501 - F_0_899) 257 times 4 dw -F_2_562, (F_3_072 - F_2_562) 258PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) 259PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) 260PB_CENTERJSAMP times 32 db CENTERJSAMPLE 261PW_1_NEG1 times 8 dw 1 262 times 8 dw -1 263 264 alignz 32 265 266; -------------------------------------------------------------------------- 267 SECTION SEG_TEXT 268 BITS 64 269; 270; Perform dequantization and inverse DCT on one block of coefficients. 271; 272; GLOBAL(void) 273; jsimd_idct_islow_avx2(void *dct_table, JCOEFPTR coef_block, 274; JSAMPARRAY output_buf, JDIMENSION output_col) 275; 276 277; r10 = jpeg_component_info *compptr 278; r11 = JCOEFPTR coef_block 279; r12 = JSAMPARRAY output_buf 280; r13d = JDIMENSION output_col 281 282 align 32 283 GLOBAL_FUNCTION(jsimd_idct_islow_avx2) 284 285EXTN(jsimd_idct_islow_avx2): 286 push rbp 287 mov rax, rsp ; rax = original rbp 288 mov rbp, rsp ; rbp = aligned rbp 289 push_xmm 4 290 collect_args 4 291 292 ; ---- Pass 1: process columns. 293 294%ifndef NO_ZERO_COLUMN_TEST_ISLOW_AVX2 295 mov eax, DWORD [DWBLOCK(1,0,r11,SIZEOF_JCOEF)] 296 or eax, DWORD [DWBLOCK(2,0,r11,SIZEOF_JCOEF)] 297 jnz near .columnDCT 298 299 movdqa xmm0, XMMWORD [XMMBLOCK(1,0,r11,SIZEOF_JCOEF)] 300 movdqa xmm1, XMMWORD [XMMBLOCK(2,0,r11,SIZEOF_JCOEF)] 301 vpor xmm0, xmm0, XMMWORD [XMMBLOCK(3,0,r11,SIZEOF_JCOEF)] 302 vpor xmm1, xmm1, XMMWORD [XMMBLOCK(4,0,r11,SIZEOF_JCOEF)] 303 vpor xmm0, xmm0, XMMWORD [XMMBLOCK(5,0,r11,SIZEOF_JCOEF)] 304 vpor xmm1, xmm1, XMMWORD [XMMBLOCK(6,0,r11,SIZEOF_JCOEF)] 305 vpor xmm0, xmm0, XMMWORD [XMMBLOCK(7,0,r11,SIZEOF_JCOEF)] 306 vpor xmm1, xmm1, xmm0 307 vpacksswb xmm1, xmm1, xmm1 308 vpacksswb xmm1, xmm1, xmm1 309 movd eax, xmm1 310 test rax, rax 311 jnz short .columnDCT 312 313 ; -- AC terms all zero 314 315 movdqa xmm5, XMMWORD [XMMBLOCK(0,0,r11,SIZEOF_JCOEF)] 316 vpmullw xmm5, xmm5, XMMWORD [XMMBLOCK(0,0,r10,SIZEOF_ISLOW_MULT_TYPE)] 317 318 vpsllw xmm5, xmm5, PASS1_BITS 319 320 vpunpcklwd xmm4, xmm5, xmm5 ; xmm4=(00 00 01 01 02 02 03 03) 321 vpunpckhwd xmm5, xmm5, xmm5 ; xmm5=(04 04 05 05 06 06 07 07) 322 vinserti128 ymm4, ymm4, xmm5, 1 323 324 vpshufd ymm0, ymm4, 0x00 ; ymm0=col0_4=(00 00 00 00 00 00 00 00 04 04 04 04 04 04 04 04) 325 vpshufd ymm1, ymm4, 0x55 ; ymm1=col1_5=(01 01 01 01 01 01 01 01 05 05 05 05 05 05 05 05) 326 vpshufd ymm2, ymm4, 0xAA ; ymm2=col2_6=(02 02 02 02 02 02 02 02 06 06 06 06 06 06 06 06) 327 vpshufd ymm3, ymm4, 0xFF ; ymm3=col3_7=(03 03 03 03 03 03 03 03 07 07 07 07 07 07 07 07) 328 329 jmp near .column_end 330%endif 331.columnDCT: 332 333 vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,r11,SIZEOF_JCOEF)] ; ymm4=in0_1 334 vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,r11,SIZEOF_JCOEF)] ; ymm5=in2_3 335 vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,r11,SIZEOF_JCOEF)] ; ymm6=in4_5 336 vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,r11,SIZEOF_JCOEF)] ; ymm7=in6_7 337 vpmullw ymm4, ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_ISLOW_MULT_TYPE)] 338 vpmullw ymm5, ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_ISLOW_MULT_TYPE)] 339 vpmullw ymm6, ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_ISLOW_MULT_TYPE)] 340 vpmullw ymm7, ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_ISLOW_MULT_TYPE)] 341 342 vperm2i128 ymm0, ymm4, ymm6, 0x20 ; ymm0=in0_4 343 vperm2i128 ymm1, ymm5, ymm4, 0x31 ; ymm1=in3_1 344 vperm2i128 ymm2, ymm5, ymm7, 0x20 ; ymm2=in2_6 345 vperm2i128 ymm3, ymm7, ymm6, 0x31 ; ymm3=in7_5 346 347 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, ymm8, ymm9, ymm10, ymm11, 1 348 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm3=data7_6 349 350 dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 351 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm3=data3_7 352 353.column_end: 354 355 ; -- Prefetch the next coefficient block 356 357 prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 0*32] 358 prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 1*32] 359 prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 2*32] 360 prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 3*32] 361 362 ; ---- Pass 2: process rows. 363 364 vperm2i128 ymm4, ymm3, ymm1, 0x31 ; ymm3=in7_5 365 vperm2i128 ymm1, ymm3, ymm1, 0x20 ; ymm1=in3_1 366 367 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, ymm8, ymm9, ymm10, ymm11, 2 368 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm4=data7_6 369 370 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 371 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm4=data3_7 372 373 vpacksswb ymm0, ymm0, ymm1 ; ymm0=data01_45 374 vpacksswb ymm1, ymm2, ymm4 ; ymm1=data23_67 375 vpaddb ymm0, ymm0, [rel PB_CENTERJSAMP] 376 vpaddb ymm1, ymm1, [rel PB_CENTERJSAMP] 377 378 vextracti128 xmm6, ymm1, 1 ; xmm3=data67 379 vextracti128 xmm4, ymm0, 1 ; xmm2=data45 380 vextracti128 xmm2, ymm1, 0 ; xmm1=data23 381 vextracti128 xmm0, ymm0, 0 ; xmm0=data01 382 383 vpshufd xmm1, xmm0, 0x4E ; xmm1=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) 384 vpshufd xmm3, xmm2, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) 385 vpshufd xmm5, xmm4, 0x4E ; xmm5=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) 386 vpshufd xmm7, xmm6, 0x4E ; xmm7=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) 387 388 vzeroupper 389 390 mov eax, r13d 391 392 mov rdx, JSAMPROW [r12+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) 393 mov rsi, JSAMPROW [r12+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) 394 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm0 395 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm1 396 397 mov rdx, JSAMPROW [r12+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) 398 mov rsi, JSAMPROW [r12+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) 399 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm2 400 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 401 402 mov rdx, JSAMPROW [r12+4*SIZEOF_JSAMPROW] ; (JSAMPLE *) 403 mov rsi, JSAMPROW [r12+5*SIZEOF_JSAMPROW] ; (JSAMPLE *) 404 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 405 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm5 406 407 mov rdx, JSAMPROW [r12+6*SIZEOF_JSAMPROW] ; (JSAMPLE *) 408 mov rsi, JSAMPROW [r12+7*SIZEOF_JSAMPROW] ; (JSAMPLE *) 409 movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 410 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 411 412 uncollect_args 4 413 pop_xmm 4 414 pop rbp 415 ret 416 417; For some reason, the OS X linker does not honor the request to align the 418; segment unless we do this. 419 align 32 420