1 /* Copyright (c) 2008-2011 Octasic Inc.
2                  2012-2017 Jean-Marc Valin */
3 /*
4    Redistribution and use in source and binary forms, with or without
5    modification, are permitted provided that the following conditions
6    are met:
7 
8    - Redistributions of source code must retain the above copyright
9    notice, this list of conditions and the following disclaimer.
10 
11    - Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in the
13    documentation and/or other materials provided with the distribution.
14 
15    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
19    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include <math.h>
33 #include "opus_types.h"
34 #include "opus_defines.h"
35 #include "arch.h"
36 #include "tansig_table.h"
37 #include "mlp.h"
38 
tansig_approx(float x)39 static OPUS_INLINE float tansig_approx(float x)
40 {
41     int i;
42     float y, dy;
43     float sign=1;
44     /* Tests are reversed to catch NaNs */
45     if (!(x<8))
46         return 1;
47     if (!(x>-8))
48         return -1;
49 #ifndef FIXED_POINT
50     /* Another check in case of -ffast-math */
51     if (celt_isnan(x))
52        return 0;
53 #endif
54     if (x<0)
55     {
56        x=-x;
57        sign=-1;
58     }
59     i = (int)floor(.5f+25*x);
60     x -= .04f*i;
61     y = tansig_table[i];
62     dy = 1-y*y;
63     y = y + x*dy*(1 - y*x);
64     return sign*y;
65 }
66 
sigmoid_approx(float x)67 static OPUS_INLINE float sigmoid_approx(float x)
68 {
69    return .5f + .5f*tansig_approx(.5f*x);
70 }
71 
compute_dense(const DenseLayer * layer,float * output,const float * input)72 void compute_dense(const DenseLayer *layer, float *output, const float *input)
73 {
74    int i, j;
75    int N, M;
76    int stride;
77    M = layer->nb_inputs;
78    N = layer->nb_neurons;
79    stride = N;
80    for (i=0;i<N;i++)
81    {
82       /* Compute update gate. */
83       float sum = layer->bias[i];
84       for (j=0;j<M;j++)
85          sum += layer->input_weights[j*stride + i]*input[j];
86       output[i] = WEIGHTS_SCALE*sum;
87    }
88    if (layer->sigmoid) {
89       for (i=0;i<N;i++)
90          output[i] = sigmoid_approx(output[i]);
91    } else {
92       for (i=0;i<N;i++)
93          output[i] = tansig_approx(output[i]);
94    }
95 }
96 
compute_gru(const GRULayer * gru,float * state,const float * input)97 void compute_gru(const GRULayer *gru, float *state, const float *input)
98 {
99    int i, j;
100    int N, M;
101    int stride;
102    float z[MAX_NEURONS];
103    float r[MAX_NEURONS];
104    float h[MAX_NEURONS];
105    M = gru->nb_inputs;
106    N = gru->nb_neurons;
107    stride = 3*N;
108    for (i=0;i<N;i++)
109    {
110       /* Compute update gate. */
111       float sum = gru->bias[i];
112       for (j=0;j<M;j++)
113          sum += gru->input_weights[j*stride + i]*input[j];
114       for (j=0;j<N;j++)
115          sum += gru->recurrent_weights[j*stride + i]*state[j];
116       z[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
117    }
118    for (i=0;i<N;i++)
119    {
120       /* Compute reset gate. */
121       float sum = gru->bias[N + i];
122       for (j=0;j<M;j++)
123          sum += gru->input_weights[N + j*stride + i]*input[j];
124       for (j=0;j<N;j++)
125          sum += gru->recurrent_weights[N + j*stride + i]*state[j];
126       r[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
127    }
128    for (i=0;i<N;i++)
129    {
130       /* Compute output. */
131       float sum = gru->bias[2*N + i];
132       for (j=0;j<M;j++)
133          sum += gru->input_weights[2*N + j*stride + i]*input[j];
134       for (j=0;j<N;j++)
135          sum += gru->recurrent_weights[2*N + j*stride + i]*state[j]*r[j];
136       h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*sum);
137    }
138    for (i=0;i<N;i++)
139       state[i] = h[i];
140 }
141 
142