1 /*
2  * Copyright 2017, Gustavo Romero, IBM Corp.
3  * Licensed under GPLv2.
4  *
5  * Check if thread endianness is flipped inadvertently to BE on trap
6  * caught in TM whilst MSR.FP and MSR.VEC are zero (i.e. just after
7  * load_fp and load_vec overflowed).
8  *
9  * The issue can be checked on LE machines simply by zeroing load_fp
10  * and load_vec and then causing a trap in TM. Since the endianness
11  * changes to BE on return from the signal handler, 'nop' is
12  * thread as an illegal instruction in following sequence:
13  *	tbegin.
14  *	beq 1f
15  *	trap
16  *	tend.
17  * 1:	nop
18  *
19  * However, although the issue is also present on BE machines, it's a
20  * bit trickier to check it on BE machines because MSR.LE bit is set
21  * to zero which determines a BE endianness that is the native
22  * endianness on BE machines, so nothing notably critical happens,
23  * i.e. no illegal instruction is observed immediately after returning
24  * from the signal handler (as it happens on LE machines). Thus to test
25  * it on BE machines LE endianness is forced after a first trap and then
26  * the endianness is verified on subsequent traps to determine if the
27  * endianness "flipped back" to the native endianness (BE).
28  */
29 
30 #define _GNU_SOURCE
31 #include <error.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <unistd.h>
35 #include <htmintrin.h>
36 #include <inttypes.h>
37 #include <pthread.h>
38 #include <sched.h>
39 #include <signal.h>
40 #include <stdbool.h>
41 
42 #include "tm.h"
43 #include "utils.h"
44 
45 #define pr_error(error_code, format, ...) \
46 	error_at_line(1, error_code, __FILE__, __LINE__, format, ##__VA_ARGS__)
47 
48 #define MSR_LE 1UL
49 #define LE     1UL
50 
51 pthread_t t0_ping;
52 pthread_t t1_pong;
53 
54 int exit_from_pong;
55 
56 int trap_event;
57 int le;
58 
59 bool success;
60 
trap_signal_handler(int signo,siginfo_t * si,void * uc)61 void trap_signal_handler(int signo, siginfo_t *si, void *uc)
62 {
63 	ucontext_t *ucp = uc;
64 	uint64_t thread_endianness;
65 
66 	/* Get thread endianness: extract bit LE from MSR */
67 	thread_endianness = MSR_LE & ucp->uc_mcontext.gp_regs[PT_MSR];
68 
69 	/***
70 	 * Little-Endian Machine
71 	 */
72 
73 	if (le) {
74 		/* First trap event */
75 		if (trap_event == 0) {
76 			/* Do nothing. Since it is returning from this trap
77 			 * event that endianness is flipped by the bug, so just
78 			 * let the process return from the signal handler and
79 			 * check on the second trap event if endianness is
80 			 * flipped or not.
81 			 */
82 		}
83 		/* Second trap event */
84 		else if (trap_event == 1) {
85 			/*
86 			 * Since trap was caught in TM on first trap event, if
87 			 * endianness was still LE (not flipped inadvertently)
88 			 * after returning from the signal handler instruction
89 			 * (1) is executed (basically a 'nop'), as it's located
90 			 * at address of tbegin. +4 (rollback addr). As (1) on
91 			 * LE endianness does in effect nothing, instruction (2)
92 			 * is then executed again as 'trap', generating a second
93 			 * trap event (note that in that case 'trap' is caught
94 			 * not in transacional mode). On te other hand, if after
95 			 * the return from the signal handler the endianness in-
96 			 * advertently flipped, instruction (1) is tread as a
97 			 * branch instruction, i.e. b .+8, hence instruction (3)
98 			 * and (4) are executed (tbegin.; trap;) and we get sim-
99 			 * ilaly on the trap signal handler, but now in TM mode.
100 			 * Either way, it's now possible to check the MSR LE bit
101 			 * once in the trap handler to verify if endianness was
102 			 * flipped or not after the return from the second trap
103 			 * event. If endianness is flipped, the bug is present.
104 			 * Finally, getting a trap in TM mode or not is just
105 			 * worth noting because it affects the math to determine
106 			 * the offset added to the NIP on return: the NIP for a
107 			 * trap caught in TM is the rollback address, i.e. the
108 			 * next instruction after 'tbegin.', whilst the NIP for
109 			 * a trap caught in non-transactional mode is the very
110 			 * same address of the 'trap' instruction that generated
111 			 * the trap event.
112 			 */
113 
114 			if (thread_endianness == LE) {
115 				/* Go to 'success', i.e. instruction (6) */
116 				ucp->uc_mcontext.gp_regs[PT_NIP] += 16;
117 			} else {
118 				/*
119 				 * Thread endianness is BE, so it flipped
120 				 * inadvertently. Thus we flip back to LE and
121 				 * set NIP to go to 'failure', instruction (5).
122 				 */
123 				ucp->uc_mcontext.gp_regs[PT_MSR] |= 1UL;
124 				ucp->uc_mcontext.gp_regs[PT_NIP] += 4;
125 			}
126 		}
127 	}
128 
129 	/***
130 	 * Big-Endian Machine
131 	 */
132 
133 	else {
134 		/* First trap event */
135 		if (trap_event == 0) {
136 			/*
137 			 * Force thread endianness to be LE. Instructions (1),
138 			 * (3), and (4) will be executed, generating a second
139 			 * trap in TM mode.
140 			 */
141 			ucp->uc_mcontext.gp_regs[PT_MSR] |= 1UL;
142 		}
143 		/* Second trap event */
144 		else if (trap_event == 1) {
145 			/*
146 			 * Do nothing. If bug is present on return from this
147 			 * second trap event endianness will flip back "automat-
148 			 * ically" to BE, otherwise thread endianness will
149 			 * continue to be LE, just as it was set above.
150 			 */
151 		}
152 		/* A third trap event */
153 		else {
154 			/*
155 			 * Once here it means that after returning from the sec-
156 			 * ond trap event instruction (4) (trap) was executed
157 			 * as LE, generating a third trap event. In that case
158 			 * endianness is still LE as set on return from the
159 			 * first trap event, hence no bug. Otherwise, bug
160 			 * flipped back to BE on return from the second trap
161 			 * event and instruction (4) was executed as 'tdi' (so
162 			 * basically a 'nop') and branch to 'failure' in
163 			 * instruction (5) was taken to indicate failure and we
164 			 * never get here.
165 			 */
166 
167 			/*
168 			 * Flip back to BE and go to instruction (6), i.e. go to
169 			 * 'success'.
170 			 */
171 			ucp->uc_mcontext.gp_regs[PT_MSR] &= ~1UL;
172 			ucp->uc_mcontext.gp_regs[PT_NIP] += 8;
173 		}
174 	}
175 
176 	trap_event++;
177 }
178 
usr1_signal_handler(int signo,siginfo_t * si,void * not_used)179 void usr1_signal_handler(int signo, siginfo_t *si, void *not_used)
180 {
181 	/* Got a USR1 signal from ping(), so just tell pong() to exit */
182 	exit_from_pong = 1;
183 }
184 
ping(void * not_used)185 void *ping(void *not_used)
186 {
187 	uint64_t i;
188 
189 	trap_event = 0;
190 
191 	/*
192 	 * Wait an amount of context switches so load_fp and load_vec overflows
193 	 * and MSR_[FP|VEC|V] is 0.
194 	 */
195 	for (i = 0; i < 1024*1024*512; i++)
196 		;
197 
198 	asm goto(
199 		/*
200 		 * [NA] means "Native Endianness", i.e. it tells how a
201 		 * instruction is executed on machine's native endianness (in
202 		 * other words, native endianness matches kernel endianness).
203 		 * [OP] means "Opposite Endianness", i.e. on a BE machine, it
204 		 * tells how a instruction is executed as a LE instruction; con-
205 		 * versely, on a LE machine, it tells how a instruction is
206 		 * executed as a BE instruction. When [NA] is omitted, it means
207 		 * that the native interpretation of a given instruction is not
208 		 * relevant for the test. Likewise when [OP] is omitted.
209 		 */
210 
211 		" tbegin.        ;" /* (0) tbegin. [NA]                    */
212 		" tdi  0, 0, 0x48;" /* (1) nop     [NA]; b (3) [OP]        */
213 		" trap           ;" /* (2) trap    [NA]                    */
214 		".long 0x1D05007C;" /* (3) tbegin. [OP]                    */
215 		".long 0x0800E07F;" /* (4) trap    [OP]; nop   [NA]        */
216 		" b %l[failure]  ;" /* (5) b [NA]; MSR.LE flipped (bug)    */
217 		" b %l[success]  ;" /* (6) b [NA]; MSR.LE did not flip (ok)*/
218 
219 		: : : : failure, success);
220 
221 failure:
222 	success = false;
223 	goto exit_from_ping;
224 
225 success:
226 	success = true;
227 
228 exit_from_ping:
229 	/* Tell pong() to exit before leaving */
230 	pthread_kill(t1_pong, SIGUSR1);
231 	return NULL;
232 }
233 
pong(void * not_used)234 void *pong(void *not_used)
235 {
236 	while (!exit_from_pong)
237 		/*
238 		 * Induce context switches on ping() thread
239 		 * until ping() finishes its job and signs
240 		 * to exit from this loop.
241 		 */
242 		sched_yield();
243 
244 	return NULL;
245 }
246 
tm_trap_test(void)247 int tm_trap_test(void)
248 {
249 	uint16_t k = 1;
250 
251 	int rc;
252 
253 	pthread_attr_t attr;
254 	cpu_set_t cpuset;
255 
256 	struct sigaction trap_sa;
257 
258 	SKIP_IF(!have_htm());
259 
260 	trap_sa.sa_flags = SA_SIGINFO;
261 	trap_sa.sa_sigaction = trap_signal_handler;
262 	sigaction(SIGTRAP, &trap_sa, NULL);
263 
264 	struct sigaction usr1_sa;
265 
266 	usr1_sa.sa_flags = SA_SIGINFO;
267 	usr1_sa.sa_sigaction = usr1_signal_handler;
268 	sigaction(SIGUSR1, &usr1_sa, NULL);
269 
270 	/* Set only CPU 0 in the mask. Both threads will be bound to cpu 0. */
271 	CPU_ZERO(&cpuset);
272 	CPU_SET(0, &cpuset);
273 
274 	/* Init pthread attribute */
275 	rc = pthread_attr_init(&attr);
276 	if (rc)
277 		pr_error(rc, "pthread_attr_init()");
278 
279 	/*
280 	 * Bind thread ping() and pong() both to CPU 0 so they ping-pong and
281 	 * speed up context switches on ping() thread, speeding up the load_fp
282 	 * and load_vec overflow.
283 	 */
284 	rc = pthread_attr_setaffinity_np(&attr, sizeof(cpu_set_t), &cpuset);
285 	if (rc)
286 		pr_error(rc, "pthread_attr_setaffinity()");
287 
288 	/* Figure out the machine endianness */
289 	le = (int) *(uint8_t *)&k;
290 
291 	printf("%s machine detected. Checking if endianness flips %s",
292 		le ? "Little-Endian" : "Big-Endian",
293 		"inadvertently on trap in TM... ");
294 
295 	rc = fflush(0);
296 	if (rc)
297 		pr_error(rc, "fflush()");
298 
299 	/* Launch ping() */
300 	rc = pthread_create(&t0_ping, &attr, ping, NULL);
301 	if (rc)
302 		pr_error(rc, "pthread_create()");
303 
304 	exit_from_pong = 0;
305 
306 	/* Launch pong() */
307 	rc = pthread_create(&t1_pong, &attr, pong, NULL);
308 	if (rc)
309 		pr_error(rc, "pthread_create()");
310 
311 	rc = pthread_join(t0_ping, NULL);
312 	if (rc)
313 		pr_error(rc, "pthread_join()");
314 
315 	rc = pthread_join(t1_pong, NULL);
316 	if (rc)
317 		pr_error(rc, "pthread_join()");
318 
319 	if (success) {
320 		printf("no.\n"); /* no, endianness did not flip inadvertently */
321 		return EXIT_SUCCESS;
322 	}
323 
324 	printf("yes!\n"); /* yes, endianness did flip inadvertently */
325 	return EXIT_FAILURE;
326 }
327 
main(int argc,char ** argv)328 int main(int argc, char **argv)
329 {
330 	return test_harness(tm_trap_test, "tm_trap_test");
331 }
332