1=====================
2YAML I/O
3=====================
4
5.. contents::
6   :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language.  The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
14yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
15or string.  The pound/hash symbol (#) begins a comment line.   A mapping is
16a set of key-value pairs where the key ends with a colon.  For example:
17
18.. code-block:: yaml
19
20     # a mapping
21     name:      Tom
22     hat-size:  7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29     # a sequence
30     - x86
31     - x86_64
32     - PowerPC
33
34You can combine mappings and sequences by indenting.  For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39     # a sequence of mappings with one key's value being a sequence
40     - name:      Tom
41       cpus:
42        - x86
43        - x86_64
44     - name:      Bob
45       cpus:
46        - x86
47     - name:      Dan
48       cpus:
49        - PowerPC
50        - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets.  The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60     # a sequence of mappings with one key's value being a flow sequence
61     - name:      Tom
62       cpus:      [ x86, x86_64 ]
63     - name:      Bob
64       cpus:      [ x86 ]
65     - name:      Dan
66       cpus:      [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML.  The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable.  Often the fields are not in the order that
82a human would find readable.  Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables.  The same considerations need to
87go into the design of your YAML encoding.  But, you may not want to change
88your existing native data structures.  Therefore, when writing out YAML
89there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some
93abstract base templates.  You specialize those templates on your data types.
94For instance, if you have an enumerated type FooBar you could specialize
95ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99    using llvm::yaml::ScalarEnumerationTraits;
100    using llvm::yaml::IO;
101
102    template <>
103    struct ScalarEnumerationTraits<FooBar> {
104      static void enumeration(IO &io, FooBar &value) {
105      ...
106      }
107    };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
112values and the YAML string representation is only in one place.
113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
116llvm::yaml::MappingTraits.
117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple.  For example:
119
120.. code-block:: c++
121
122    using llvm::yaml::MappingTraits;
123    using llvm::yaml::IO;
124
125    template <>
126    struct MappingTraits<Person> {
127      static void mapping(IO &io, Person &info) {
128        io.mapRequired("name",         info.name);
129        io.mapOptional("hat-size",     info.hatSize);
130      }
131    };
132
133
134A YAML sequence is automatically inferred if you data type has begin()/end()
135iterators and a push_back() method.  Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143    using llvm::yaml::Output;
144
145    Person tom;
146    tom.name = "Tom";
147    tom.hatSize = 8;
148    Person dan;
149    dan.name = "Dan";
150    dan.hatSize = 7;
151    std::vector<Person> persons;
152    persons.push_back(tom);
153    persons.push_back(dan);
154
155    Output yout(llvm::outs());
156    yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162     - name:      Tom
163       hat-size:  8
164     - name:      Dan
165       hat-size:  7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171    using llvm::yaml::Input;
172
173    typedef std::vector<Person> PersonList;
174    std::vector<PersonList> docs;
175
176    Input yin(document.getBuffer());
177    yin >> docs;
178
179    if ( yin.error() )
180      return;
181
182    // Process read document
183    for ( PersonList &pl : docs ) {
184      for ( Person &person : pl ) {
185        cout << "name=" << person.name;
186      }
187    }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file.  That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations).  YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204     - name:      Tom
205       shoe-size: 12
206     - name:      Dan
207       hat-size:  7
208
209Has a key (shoe-size) that is not defined in the schema.  YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214    YAML:2:2: error: unknown key 'shoe-size'
215      shoe-size:       12
216      ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* std::string
238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
247That is, you can use those types in fields of MappingTraits or as element type
248in sequence.  When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data.  But in C++ type matching, typedefs
256do not generate unique type names.  That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int.  To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type.  For example:
261
262.. code-block:: c++
263
264    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t.  The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define a enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297    enum CPUs {
298      cpu_x86_64  = 5,
299      cpu_x86     = 7,
300      cpu_PowerPC = 8
301    };
302
303    struct Info {
304      CPUs      cpu;
305      uint32_t  flags;
306    };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314    using llvm::yaml::ScalarEnumerationTraits;
315    using llvm::yaml::MappingTraits;
316    using llvm::yaml::IO;
317
318    template <>
319    struct ScalarEnumerationTraits<CPUs> {
320      static void enumeration(IO &io, CPUs &value) {
321        io.enumCase(value, "x86_64",  cpu_x86_64);
322        io.enumCase(value, "x86",     cpu_x86);
323        io.enumCase(value, "PowerPC", cpu_PowerPC);
324      }
325    };
326
327    template <>
328    struct MappingTraits<Info> {
329      static void mapping(IO &io, Info &info) {
330        io.mapRequired("cpu",       info.cpu);
331        io.mapOptional("flags",     info.flags, 0);
332      }
333    };
334
335When reading YAML, if the string found does not match any of the strings
336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning.  This is often used in a "flags" field.  YAML I/O has support for
345converting such fields to a flow sequence.   For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350    enum {
351      flagsPointy = 1
352      flagsHollow = 2
353      flagsFlat   = 4
354      flagsRound  = 8
355    };
356
357    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364    using llvm::yaml::ScalarBitSetTraits;
365    using llvm::yaml::MappingTraits;
366    using llvm::yaml::IO;
367
368    template <>
369    struct ScalarBitSetTraits<MyFlags> {
370      static void bitset(IO &io, MyFlags &value) {
371        io.bitSetCase(value, "hollow",  flagHollow);
372        io.bitSetCase(value, "flat",    flagFlat);
373        io.bitSetCase(value, "round",   flagRound);
374        io.bitSetCase(value, "pointy",  flagPointy);
375      }
376    };
377
378    struct Info {
379      StringRef   name;
380      MyFlags     flags;
381    };
382
383    template <>
384    struct MappingTraits<Info> {
385      static void mapping(IO &io, Info& info) {
386        io.mapRequired("name",  info.name);
387        io.mapRequired("flags", info.flags);
388       }
389    };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence.  The opposite
394is done when reading and any unknown string values will result in a error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399    name:    Tom
400    flags:   [ pointy, flat ]
401
402Sometimes a "flags" field might contains an enumeration part
403defined by a bit-mask.
404
405.. code-block:: c++
406
407    enum {
408      flagsFeatureA = 1,
409      flagsFeatureB = 2,
410      flagsFeatureC = 4,
411
412      flagsCPUMask = 24,
413
414      flagsCPU1 = 8,
415      flagsCPU2 = 16
416    };
417
418To support reading and writing such fields, you need to use the maskedBitSet()
419method and provide the bit values, their names and the enumeration mask.
420
421.. code-block:: c++
422
423    template <>
424    struct ScalarBitSetTraits<MyFlags> {
425      static void bitset(IO &io, MyFlags &value) {
426        io.bitSetCase(value, "featureA",  flagsFeatureA);
427        io.bitSetCase(value, "featureB",  flagsFeatureB);
428        io.bitSetCase(value, "featureC",  flagsFeatureC);
429        io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
430        io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
431      }
432    };
433
434YAML I/O (when writing) will apply the enumeration mask to the flags field,
435and compare the result and values from the bitset. As in case of a regular
436bitset, each that matches will cause the corresponding string to be added
437to the flow sequence.
438
439Custom Scalar
440-------------
441Sometimes for readability a scalar needs to be formatted in a custom way. For
442instance your internal data structure may use a integer for time (seconds since
443some epoch), but in YAML it would be much nicer to express that integer in
444some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support
445custom formatting and parsing of scalar types by specializing ScalarTraits<> on
446your data type.  When writing, YAML I/O will provide the native type and
447your specialization must create a temporary llvm::StringRef.  When reading,
448YAML I/O will provide an llvm::StringRef of scalar and your specialization
449must convert that to your native data type.  An outline of a custom scalar type
450looks like:
451
452.. code-block:: c++
453
454    using llvm::yaml::ScalarTraits;
455    using llvm::yaml::IO;
456
457    template <>
458    struct ScalarTraits<MyCustomType> {
459      static void output(const MyCustomType &value, void*,
460                         llvm::raw_ostream &out) {
461        out << value;  // do custom formatting here
462      }
463      static StringRef input(StringRef scalar, void*, MyCustomType &value) {
464        // do custom parsing here.  Return the empty string on success,
465        // or an error message on failure.
466        return StringRef();
467      }
468      // Determine if this scalar needs quotes.
469      static bool mustQuote(StringRef) { return true; }
470    };
471
472Block Scalars
473-------------
474
475YAML block scalars are string literals that are represented in YAML using the
476literal block notation, just like the example shown below:
477
478.. code-block:: yaml
479
480    text: |
481      First line
482      Second line
483
484The YAML I/O library provides support for translating between YAML block scalars
485and specific C++ types by allowing you to specialize BlockScalarTraits<> on
486your data type. The library doesn't provide any built-in support for block
487scalar I/O for types like std::string and llvm::StringRef as they are already
488supported by YAML I/O and use the ordinary scalar notation by default.
489
490BlockScalarTraits specializations are very similar to the
491ScalarTraits specialization - YAML I/O will provide the native type and your
492specialization must create a temporary llvm::StringRef when writing, and
493it will also provide an llvm::StringRef that has the value of that block scalar
494and your specialization must convert that to your native data type when reading.
495An example of a custom type with an appropriate specialization of
496BlockScalarTraits is shown below:
497
498.. code-block:: c++
499
500    using llvm::yaml::BlockScalarTraits;
501    using llvm::yaml::IO;
502
503    struct MyStringType {
504      std::string Str;
505    };
506
507    template <>
508    struct BlockScalarTraits<MyStringType> {
509      static void output(const MyStringType &Value, void *Ctxt,
510                         llvm::raw_ostream &OS) {
511        OS << Value.Str;
512      }
513
514      static StringRef input(StringRef Scalar, void *Ctxt,
515                             MyStringType &Value) {
516        Value.Str = Scalar.str();
517        return StringRef();
518      }
519    };
520
521
522
523Mappings
524========
525
526To be translated to or from a YAML mapping for your type T you must specialize
527llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
528method. If your native data structures use pointers to a class everywhere,
529you can specialize on the class pointer.  Examples:
530
531.. code-block:: c++
532
533    using llvm::yaml::MappingTraits;
534    using llvm::yaml::IO;
535
536    // Example of struct Foo which is used by value
537    template <>
538    struct MappingTraits<Foo> {
539      static void mapping(IO &io, Foo &foo) {
540        io.mapOptional("size",      foo.size);
541      ...
542      }
543    };
544
545    // Example of struct Bar which is natively always a pointer
546    template <>
547    struct MappingTraits<Bar*> {
548      static void mapping(IO &io, Bar *&bar) {
549        io.mapOptional("size",    bar->size);
550      ...
551      }
552    };
553
554
555No Normalization
556----------------
557
558The mapping() method is responsible, if needed, for normalizing and
559denormalizing. In a simple case where the native data structure requires no
560normalization, the mapping method just uses mapOptional() or mapRequired() to
561bind the struct's fields to YAML key names.  For example:
562
563.. code-block:: c++
564
565    using llvm::yaml::MappingTraits;
566    using llvm::yaml::IO;
567
568    template <>
569    struct MappingTraits<Person> {
570      static void mapping(IO &io, Person &info) {
571        io.mapRequired("name",         info.name);
572        io.mapOptional("hat-size",     info.hatSize);
573      }
574    };
575
576
577Normalization
578----------------
579
580When [de]normalization is required, the mapping() method needs a way to access
581normalized values as fields. To help with this, there is
582a template MappingNormalization<> which you can then use to automatically
583do the normalization and denormalization.  The template is used to create
584a local variable in your mapping() method which contains the normalized keys.
585
586Suppose you have native data type
587Polar which specifies a position in polar coordinates (distance, angle):
588
589.. code-block:: c++
590
591    struct Polar {
592      float distance;
593      float angle;
594    };
595
596but you've decided the normalized YAML for should be in x,y coordinates. That
597is, you want the yaml to look like:
598
599.. code-block:: yaml
600
601    x:   10.3
602    y:   -4.7
603
604You can support this by defining a MappingTraits that normalizes the polar
605coordinates to x,y coordinates when writing YAML and denormalizes x,y
606coordinates into polar when reading YAML.
607
608.. code-block:: c++
609
610    using llvm::yaml::MappingTraits;
611    using llvm::yaml::IO;
612
613    template <>
614    struct MappingTraits<Polar> {
615
616      class NormalizedPolar {
617      public:
618        NormalizedPolar(IO &io)
619          : x(0.0), y(0.0) {
620        }
621        NormalizedPolar(IO &, Polar &polar)
622          : x(polar.distance * cos(polar.angle)),
623            y(polar.distance * sin(polar.angle)) {
624        }
625        Polar denormalize(IO &) {
626          return Polar(sqrt(x*x+y*y), arctan(x,y));
627        }
628
629        float        x;
630        float        y;
631      };
632
633      static void mapping(IO &io, Polar &polar) {
634        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
635
636        io.mapRequired("x",    keys->x);
637        io.mapRequired("y",    keys->y);
638      }
639    };
640
641When writing YAML, the local variable "keys" will be a stack allocated
642instance of NormalizedPolar, constructed from the supplied polar object which
643initializes it x and y fields.  The mapRequired() methods then write out the x
644and y values as key/value pairs.
645
646When reading YAML, the local variable "keys" will be a stack allocated instance
647of NormalizedPolar, constructed by the empty constructor.  The mapRequired
648methods will find the matching key in the YAML document and fill in the x and y
649fields of the NormalizedPolar object keys. At the end of the mapping() method
650when the local keys variable goes out of scope, the denormalize() method will
651automatically be called to convert the read values back to polar coordinates,
652and then assigned back to the second parameter to mapping().
653
654In some cases, the normalized class may be a subclass of the native type and
655could be returned by the denormalize() method, except that the temporary
656normalized instance is stack allocated.  In these cases, the utility template
657MappingNormalizationHeap<> can be used instead.  It just like
658MappingNormalization<> except that it heap allocates the normalized object
659when reading YAML.  It never destroys the normalized object.  The denormalize()
660method can this return "this".
661
662
663Default values
664--------------
665Within a mapping() method, calls to io.mapRequired() mean that that key is
666required to exist when parsing YAML documents, otherwise YAML I/O will issue an
667error.
668
669On the other hand, keys registered with io.mapOptional() are allowed to not
670exist in the YAML document being read.  So what value is put in the field
671for those optional keys?
672There are two steps to how those optional fields are filled in. First, the
673second parameter to the mapping() method is a reference to a native class.  That
674native class must have a default constructor.  Whatever value the default
675constructor initially sets for an optional field will be that field's value.
676Second, the mapOptional() method has an optional third parameter.  If provided
677it is the value that mapOptional() should set that field to if the YAML document
678does not have that key.
679
680There is one important difference between those two ways (default constructor
681and third parameter to mapOptional). When YAML I/O generates a YAML document,
682if the mapOptional() third parameter is used, if the actual value being written
683is the same as (using ==) the default value, then that key/value is not written.
684
685
686Order of Keys
687--------------
688
689When writing out a YAML document, the keys are written in the order that the
690calls to mapRequired()/mapOptional() are made in the mapping() method. This
691gives you a chance to write the fields in an order that a human reader of
692the YAML document would find natural.  This may be different that the order
693of the fields in the native class.
694
695When reading in a YAML document, the keys in the document can be in any order,
696but they are processed in the order that the calls to mapRequired()/mapOptional()
697are made in the mapping() method.  That enables some interesting
698functionality.  For instance, if the first field bound is the cpu and the second
699field bound is flags, and the flags are cpu specific, you can programmatically
700switch how the flags are converted to and from YAML based on the cpu.
701This works for both reading and writing. For example:
702
703.. code-block:: c++
704
705    using llvm::yaml::MappingTraits;
706    using llvm::yaml::IO;
707
708    struct Info {
709      CPUs        cpu;
710      uint32_t    flags;
711    };
712
713    template <>
714    struct MappingTraits<Info> {
715      static void mapping(IO &io, Info &info) {
716        io.mapRequired("cpu",       info.cpu);
717        // flags must come after cpu for this to work when reading yaml
718        if ( info.cpu == cpu_x86_64 )
719          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
720        else
721          io.mapRequired("flags",  *(My86Flags*)info.flags);
722     }
723    };
724
725
726Tags
727----
728
729The YAML syntax supports tags as a way to specify the type of a node before
730it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
731static typing, so there are limits to how you can use tags with the YAML I/O
732model. Recently, we added support to YAML I/O for checking/setting the optional
733tag on a map. Using this functionality it is even possbile to support different
734mappings, as long as they are convertable.
735
736To check a tag, inside your mapping() method you can use io.mapTag() to specify
737what the tag should be.  This will also add that tag when writing yaml.
738
739Validation
740----------
741
742Sometimes in a yaml map, each key/value pair is valid, but the combination is
743not.  This is similar to something having no syntax errors, but still having
744semantic errors.  To support semantic level checking, YAML I/O allows
745an optional ``validate()`` method in a MappingTraits template specialization.
746
747When parsing yaml, the ``validate()`` method is call *after* all key/values in
748the map have been processed. Any error message returned by the ``validate()``
749method during input will be printed just a like a syntax error would be printed.
750When writing yaml, the ``validate()`` method is called *before* the yaml
751key/values  are written.  Any error during output will trigger an ``assert()``
752because it is a programming error to have invalid struct values.
753
754
755.. code-block:: c++
756
757    using llvm::yaml::MappingTraits;
758    using llvm::yaml::IO;
759
760    struct Stuff {
761      ...
762    };
763
764    template <>
765    struct MappingTraits<Stuff> {
766      static void mapping(IO &io, Stuff &stuff) {
767      ...
768      }
769      static StringRef validate(IO &io, Stuff &stuff) {
770        // Look at all fields in 'stuff' and if there
771        // are any bad values return a string describing
772        // the error.  Otherwise return an empty string.
773        return StringRef();
774      }
775    };
776
777Flow Mapping
778------------
779A YAML "flow mapping" is a mapping that uses the inline notation
780(e.g { x: 1, y: 0 } ) when written to YAML. To specify that a type should be
781written in YAML using flow mapping, your MappingTraits specialization should
782add "static const bool flow = true;". For instance:
783
784.. code-block:: c++
785
786    using llvm::yaml::MappingTraits;
787    using llvm::yaml::IO;
788
789    struct Stuff {
790      ...
791    };
792
793    template <>
794    struct MappingTraits<Stuff> {
795      static void mapping(IO &io, Stuff &stuff) {
796        ...
797      }
798
799      static const bool flow = true;
800    }
801
802Flow mappings are subject to line wrapping according to the Output object
803configuration.
804
805Sequence
806========
807
808To be translated to or from a YAML sequence for your type T you must specialize
809llvm::yaml::SequenceTraits on T and implement two methods:
810``size_t size(IO &io, T&)`` and
811``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
812
813.. code-block:: c++
814
815  template <>
816  struct SequenceTraits<MySeq> {
817    static size_t size(IO &io, MySeq &list) { ... }
818    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
819  };
820
821The size() method returns how many elements are currently in your sequence.
822The element() method returns a reference to the i'th element in the sequence.
823When parsing YAML, the element() method may be called with an index one bigger
824than the current size.  Your element() method should allocate space for one
825more element (using default constructor if element is a C++ object) and returns
826a reference to that new allocated space.
827
828
829Flow Sequence
830-------------
831A YAML "flow sequence" is a sequence that when written to YAML it uses the
832inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
833be written in YAML as a flow sequence, your SequenceTraits specialization should
834add "static const bool flow = true;".  For instance:
835
836.. code-block:: c++
837
838  template <>
839  struct SequenceTraits<MyList> {
840    static size_t size(IO &io, MyList &list) { ... }
841    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
842
843    // The existence of this member causes YAML I/O to use a flow sequence
844    static const bool flow = true;
845  };
846
847With the above, if you used MyList as the data type in your native data
848structures, then when converted to YAML, a flow sequence of integers
849will be used (e.g. [ 10, -3, 4 ]).
850
851Flow sequences are subject to line wrapping according to the Output object
852configuration.
853
854Utility Macros
855--------------
856Since a common source of sequences is std::vector<>, YAML I/O provides macros:
857LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
858can be used to easily specify SequenceTraits<> on a std::vector type.  YAML
859I/O does not partial specialize SequenceTraits on std::vector<> because that
860would force all vectors to be sequences.  An example use of the macros:
861
862.. code-block:: c++
863
864  std::vector<MyType1>;
865  std::vector<MyType2>;
866  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
867  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
868
869
870
871Document List
872=============
873
874YAML allows you to define multiple "documents" in a single YAML file.  Each
875new document starts with a left aligned "---" token.  The end of all documents
876is denoted with a left aligned "..." token.  Many users of YAML will never
877have need for multiple documents.  The top level node in their YAML schema
878will be a mapping or sequence. For those cases, the following is not needed.
879But for cases where you do want multiple documents, you can specify a
880trait for you document list type.  The trait has the same methods as
881SequenceTraits but is named DocumentListTraits.  For example:
882
883.. code-block:: c++
884
885  template <>
886  struct DocumentListTraits<MyDocList> {
887    static size_t size(IO &io, MyDocList &list) { ... }
888    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
889  };
890
891
892User Context Data
893=================
894When an llvm::yaml::Input or llvm::yaml::Output object is created their
895constructors take an optional "context" parameter.  This is a pointer to
896whatever state information you might need.
897
898For instance, in a previous example we showed how the conversion type for a
899flags field could be determined at runtime based on the value of another field
900in the mapping. But what if an inner mapping needs to know some field value
901of an outer mapping?  That is where the "context" parameter comes in. You
902can set values in the context in the outer map's mapping() method and
903retrieve those values in the inner map's mapping() method.
904
905The context value is just a void*.  All your traits which use the context
906and operate on your native data types, need to agree what the context value
907actually is.  It could be a pointer to an object or struct which your various
908traits use to shared context sensitive information.
909
910
911Output
912======
913
914The llvm::yaml::Output class is used to generate a YAML document from your
915in-memory data structures, using traits defined on your data types.
916To instantiate an Output object you need an llvm::raw_ostream, an optional
917context pointer and an optional wrapping column:
918
919.. code-block:: c++
920
921      class Output : public IO {
922      public:
923        Output(llvm::raw_ostream &, void *context = NULL, int WrapColumn = 70);
924
925Once you have an Output object, you can use the C++ stream operator on it
926to write your native data as YAML. One thing to recall is that a YAML file
927can contain multiple "documents".  If the top level data structure you are
928streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
929are generating one document and wraps the mapping output
930with  "``---``" and trailing "``...``".
931
932The WrapColumn parameter will cause the flow mappings and sequences to
933line-wrap when they go over the supplied column. Pass 0 to completely
934suppress the wrapping.
935
936.. code-block:: c++
937
938    using llvm::yaml::Output;
939
940    void dumpMyMapDoc(const MyMapType &info) {
941      Output yout(llvm::outs());
942      yout << info;
943    }
944
945The above could produce output like:
946
947.. code-block:: yaml
948
949     ---
950     name:      Tom
951     hat-size:  7
952     ...
953
954On the other hand, if the top level data structure you are streaming as YAML
955has a DocumentListTraits specialization, then Output walks through each element
956of your DocumentList and generates a "---" before the start of each element
957and ends with a "...".
958
959.. code-block:: c++
960
961    using llvm::yaml::Output;
962
963    void dumpMyMapDoc(const MyDocListType &docList) {
964      Output yout(llvm::outs());
965      yout << docList;
966    }
967
968The above could produce output like:
969
970.. code-block:: yaml
971
972     ---
973     name:      Tom
974     hat-size:  7
975     ---
976     name:      Tom
977     shoe-size:  11
978     ...
979
980Input
981=====
982
983The llvm::yaml::Input class is used to parse YAML document(s) into your native
984data structures. To instantiate an Input
985object you need a StringRef to the entire YAML file, and optionally a context
986pointer:
987
988.. code-block:: c++
989
990      class Input : public IO {
991      public:
992        Input(StringRef inputContent, void *context=NULL);
993
994Once you have an Input object, you can use the C++ stream operator to read
995the document(s).  If you expect there might be multiple YAML documents in
996one file, you'll need to specialize DocumentListTraits on a list of your
997document type and stream in that document list type.  Otherwise you can
998just stream in the document type.  Also, you can check if there was
999any syntax errors in the YAML be calling the error() method on the Input
1000object.  For example:
1001
1002.. code-block:: c++
1003
1004     // Reading a single document
1005     using llvm::yaml::Input;
1006
1007     Input yin(mb.getBuffer());
1008
1009     // Parse the YAML file
1010     MyDocType theDoc;
1011     yin >> theDoc;
1012
1013     // Check for error
1014     if ( yin.error() )
1015       return;
1016
1017
1018.. code-block:: c++
1019
1020     // Reading multiple documents in one file
1021     using llvm::yaml::Input;
1022
1023     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
1024
1025     Input yin(mb.getBuffer());
1026
1027     // Parse the YAML file
1028     std::vector<MyDocType> theDocList;
1029     yin >> theDocList;
1030
1031     // Check for error
1032     if ( yin.error() )
1033       return;
1034
1035
1036