1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Parallel JIT
11 //
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads.  It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ExecutionEngine/ExecutionEngine.h"
25 #include "llvm/ExecutionEngine/GenericValue.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstddef>
42 #include <cstdint>
43 #include <iostream>
44 #include <memory>
45 #include <vector>
46 #include <pthread.h>
47 
48 using namespace llvm;
49 
createAdd1(Module * M)50 static Function* createAdd1(Module *M) {
51   // Create the add1 function entry and insert this entry into module M.  The
52   // function will have a return type of "int" and take an argument of "int".
53   // The '0' terminates the list of argument types.
54   Function *Add1F =
55     cast<Function>(M->getOrInsertFunction("add1",
56                                           Type::getInt32Ty(M->getContext()),
57                                           Type::getInt32Ty(M->getContext()),
58                                           nullptr));
59 
60   // Add a basic block to the function. As before, it automatically inserts
61   // because of the last argument.
62   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
63 
64   // Get pointers to the constant `1'.
65   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
66 
67   // Get pointers to the integer argument of the add1 function...
68   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
69   Argument *ArgX = &*Add1F->arg_begin();          // Get the arg
70   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
71 
72   // Create the add instruction, inserting it into the end of BB.
73   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
74 
75   // Create the return instruction and add it to the basic block
76   ReturnInst::Create(M->getContext(), Add, BB);
77 
78   // Now, function add1 is ready.
79   return Add1F;
80 }
81 
CreateFibFunction(Module * M)82 static Function *CreateFibFunction(Module *M) {
83   // Create the fib function and insert it into module M.  This function is said
84   // to return an int and take an int parameter.
85   Function *FibF =
86     cast<Function>(M->getOrInsertFunction("fib",
87                                           Type::getInt32Ty(M->getContext()),
88                                           Type::getInt32Ty(M->getContext()),
89                                           nullptr));
90 
91   // Add a basic block to the function.
92   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
93 
94   // Get pointers to the constants.
95   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
96   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
97 
98   // Get pointer to the integer argument of the add1 function...
99   Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
100   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
101 
102   // Create the true_block.
103   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
104   // Create an exit block.
105   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
106 
107   // Create the "if (arg < 2) goto exitbb"
108   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
109   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
110 
111   // Create: ret int 1
112   ReturnInst::Create(M->getContext(), One, RetBB);
113 
114   // create fib(x-1)
115   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
116   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
117 
118   // create fib(x-2)
119   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
120   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
121 
122   // fib(x-1)+fib(x-2)
123   Value *Sum =
124     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
125 
126   // Create the return instruction and add it to the basic block
127   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
128 
129   return FibF;
130 }
131 
132 struct threadParams {
133   ExecutionEngine* EE;
134   Function* F;
135   int value;
136 };
137 
138 // We block the subthreads just before they begin to execute:
139 // we want all of them to call into the JIT at the same time,
140 // to verify that the locking is working correctly.
141 class WaitForThreads
142 {
143 public:
WaitForThreads()144   WaitForThreads()
145   {
146     n = 0;
147     waitFor = 0;
148 
149     int result = pthread_cond_init( &condition, nullptr );
150     assert( result == 0 );
151 
152     result = pthread_mutex_init( &mutex, nullptr );
153     assert( result == 0 );
154   }
155 
~WaitForThreads()156   ~WaitForThreads()
157   {
158     int result = pthread_cond_destroy( &condition );
159     (void)result;
160     assert( result == 0 );
161 
162     result = pthread_mutex_destroy( &mutex );
163     assert( result == 0 );
164   }
165 
166   // All threads will stop here until another thread calls releaseThreads
block()167   void block()
168   {
169     int result = pthread_mutex_lock( &mutex );
170     (void)result;
171     assert( result == 0 );
172     n ++;
173     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
174 
175     assert( waitFor == 0 || n <= waitFor );
176     if ( waitFor > 0 && n == waitFor )
177     {
178       // There are enough threads blocked that we can release all of them
179       std::cout << "Unblocking threads from block()" << std::endl;
180       unblockThreads();
181     }
182     else
183     {
184       // We just need to wait until someone unblocks us
185       result = pthread_cond_wait( &condition, &mutex );
186       assert( result == 0 );
187     }
188 
189     // unlock the mutex before returning
190     result = pthread_mutex_unlock( &mutex );
191     assert( result == 0 );
192   }
193 
194   // If there are num or more threads blocked, it will signal them all
195   // Otherwise, this thread blocks until there are enough OTHER threads
196   // blocked
releaseThreads(size_t num)197   void releaseThreads( size_t num )
198   {
199     int result = pthread_mutex_lock( &mutex );
200     (void)result;
201     assert( result == 0 );
202 
203     if ( n >= num ) {
204       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
205       unblockThreads();
206     }
207     else
208     {
209       waitFor = num;
210       pthread_cond_wait( &condition, &mutex );
211     }
212 
213     // unlock the mutex before returning
214     result = pthread_mutex_unlock( &mutex );
215     assert( result == 0 );
216   }
217 
218 private:
unblockThreads()219   void unblockThreads()
220   {
221     // Reset the counters to zero: this way, if any new threads
222     // enter while threads are exiting, they will block instead
223     // of triggering a new release of threads
224     n = 0;
225 
226     // Reset waitFor to zero: this way, if waitFor threads enter
227     // while threads are exiting, they will block instead of
228     // triggering a new release of threads
229     waitFor = 0;
230 
231     int result = pthread_cond_broadcast( &condition );
232     (void)result;
233     assert(result == 0);
234   }
235 
236   size_t n;
237   size_t waitFor;
238   pthread_cond_t condition;
239   pthread_mutex_t mutex;
240 };
241 
242 static WaitForThreads synchronize;
243 
callFunc(void * param)244 void* callFunc( void* param )
245 {
246   struct threadParams* p = (struct threadParams*) param;
247 
248   // Call the `foo' function with no arguments:
249   std::vector<GenericValue> Args(1);
250   Args[0].IntVal = APInt(32, p->value);
251 
252   synchronize.block(); // wait until other threads are at this point
253   GenericValue gv = p->EE->runFunction(p->F, Args);
254 
255   return (void*)(intptr_t)gv.IntVal.getZExtValue();
256 }
257 
main()258 int main() {
259   InitializeNativeTarget();
260   LLVMContext Context;
261 
262   // Create some module to put our function into it.
263   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
264   Module *M = Owner.get();
265 
266   Function* add1F = createAdd1( M );
267   Function* fibF = CreateFibFunction( M );
268 
269   // Now we create the JIT.
270   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
271 
272   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
273   //~ std::cout << "\n\nRunning foo: " << std::flush;
274 
275   // Create one thread for add1 and two threads for fib
276   struct threadParams add1 = { EE, add1F, 1000 };
277   struct threadParams fib1 = { EE, fibF, 39 };
278   struct threadParams fib2 = { EE, fibF, 42 };
279 
280   pthread_t add1Thread;
281   int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
282   if ( result != 0 ) {
283           std::cerr << "Could not create thread" << std::endl;
284           return 1;
285   }
286 
287   pthread_t fibThread1;
288   result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
289   if ( result != 0 ) {
290           std::cerr << "Could not create thread" << std::endl;
291           return 1;
292   }
293 
294   pthread_t fibThread2;
295   result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
296   if ( result != 0 ) {
297           std::cerr << "Could not create thread" << std::endl;
298           return 1;
299   }
300 
301   synchronize.releaseThreads(3); // wait until other threads are at this point
302 
303   void* returnValue;
304   result = pthread_join( add1Thread, &returnValue );
305   if ( result != 0 ) {
306           std::cerr << "Could not join thread" << std::endl;
307           return 1;
308   }
309   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
310 
311   result = pthread_join( fibThread1, &returnValue );
312   if ( result != 0 ) {
313           std::cerr << "Could not join thread" << std::endl;
314           return 1;
315   }
316   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
317 
318   result = pthread_join( fibThread2, &returnValue );
319   if ( result != 0 ) {
320           std::cerr << "Could not join thread" << std::endl;
321           return 1;
322   }
323   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
324 
325   return 0;
326 }
327