1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16 
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <climits>
21 #include <cstdint>
22 #include <cstdlib>
23 #include <cstring>
24 
25 namespace llvm {
26 
27 class BitVector {
28   typedef unsigned long BitWord;
29 
30   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31 
32   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
33                 "Unsupported word size");
34 
35   BitWord  *Bits;        // Actual bits.
36   unsigned Size;         // Size of bitvector in bits.
37   unsigned Capacity;     // Number of BitWords allocated in the Bits array.
38 
39 public:
40   typedef unsigned size_type;
41   // Encapsulation of a single bit.
42   class reference {
43     friend class BitVector;
44 
45     BitWord *WordRef;
46     unsigned BitPos;
47 
48     reference();  // Undefined
49 
50   public:
reference(BitVector & b,unsigned Idx)51     reference(BitVector &b, unsigned Idx) {
52       WordRef = &b.Bits[Idx / BITWORD_SIZE];
53       BitPos = Idx % BITWORD_SIZE;
54     }
55 
56     reference(const reference&) = default;
57 
58     reference &operator=(reference t) {
59       *this = bool(t);
60       return *this;
61     }
62 
63     reference& operator=(bool t) {
64       if (t)
65         *WordRef |= BitWord(1) << BitPos;
66       else
67         *WordRef &= ~(BitWord(1) << BitPos);
68       return *this;
69     }
70 
71     operator bool() const {
72       return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
73     }
74   };
75 
76 
77   /// BitVector default ctor - Creates an empty bitvector.
BitVector()78   BitVector() : Size(0), Capacity(0) {
79     Bits = nullptr;
80   }
81 
82   /// BitVector ctor - Creates a bitvector of specified number of bits. All
83   /// bits are initialized to the specified value.
Size(s)84   explicit BitVector(unsigned s, bool t = false) : Size(s) {
85     Capacity = NumBitWords(s);
86     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
87     init_words(Bits, Capacity, t);
88     if (t)
89       clear_unused_bits();
90   }
91 
92   /// BitVector copy ctor.
BitVector(const BitVector & RHS)93   BitVector(const BitVector &RHS) : Size(RHS.size()) {
94     if (Size == 0) {
95       Bits = nullptr;
96       Capacity = 0;
97       return;
98     }
99 
100     Capacity = NumBitWords(RHS.size());
101     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
102     std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
103   }
104 
BitVector(BitVector && RHS)105   BitVector(BitVector &&RHS)
106     : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
107     RHS.Bits = nullptr;
108     RHS.Size = RHS.Capacity = 0;
109   }
110 
~BitVector()111   ~BitVector() {
112     std::free(Bits);
113   }
114 
115   /// empty - Tests whether there are no bits in this bitvector.
empty()116   bool empty() const { return Size == 0; }
117 
118   /// size - Returns the number of bits in this bitvector.
size()119   size_type size() const { return Size; }
120 
121   /// count - Returns the number of bits which are set.
count()122   size_type count() const {
123     unsigned NumBits = 0;
124     for (unsigned i = 0; i < NumBitWords(size()); ++i)
125       NumBits += countPopulation(Bits[i]);
126     return NumBits;
127   }
128 
129   /// any - Returns true if any bit is set.
any()130   bool any() const {
131     for (unsigned i = 0; i < NumBitWords(size()); ++i)
132       if (Bits[i] != 0)
133         return true;
134     return false;
135   }
136 
137   /// all - Returns true if all bits are set.
all()138   bool all() const {
139     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
140       if (Bits[i] != ~0UL)
141         return false;
142 
143     // If bits remain check that they are ones. The unused bits are always zero.
144     if (unsigned Remainder = Size % BITWORD_SIZE)
145       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
146 
147     return true;
148   }
149 
150   /// none - Returns true if none of the bits are set.
none()151   bool none() const {
152     return !any();
153   }
154 
155   /// find_first - Returns the index of the first set bit, -1 if none
156   /// of the bits are set.
find_first()157   int find_first() const {
158     for (unsigned i = 0; i < NumBitWords(size()); ++i)
159       if (Bits[i] != 0)
160         return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
161     return -1;
162   }
163 
164   /// find_next - Returns the index of the next set bit following the
165   /// "Prev" bit. Returns -1 if the next set bit is not found.
find_next(unsigned Prev)166   int find_next(unsigned Prev) const {
167     ++Prev;
168     if (Prev >= Size)
169       return -1;
170 
171     unsigned WordPos = Prev / BITWORD_SIZE;
172     unsigned BitPos = Prev % BITWORD_SIZE;
173     BitWord Copy = Bits[WordPos];
174     // Mask off previous bits.
175     Copy &= ~0UL << BitPos;
176 
177     if (Copy != 0)
178       return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
179 
180     // Check subsequent words.
181     for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
182       if (Bits[i] != 0)
183         return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
184     return -1;
185   }
186 
187   /// clear - Clear all bits.
clear()188   void clear() {
189     Size = 0;
190   }
191 
192   /// resize - Grow or shrink the bitvector.
193   void resize(unsigned N, bool t = false) {
194     if (N > Capacity * BITWORD_SIZE) {
195       unsigned OldCapacity = Capacity;
196       grow(N);
197       init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
198     }
199 
200     // Set any old unused bits that are now included in the BitVector. This
201     // may set bits that are not included in the new vector, but we will clear
202     // them back out below.
203     if (N > Size)
204       set_unused_bits(t);
205 
206     // Update the size, and clear out any bits that are now unused
207     unsigned OldSize = Size;
208     Size = N;
209     if (t || N < OldSize)
210       clear_unused_bits();
211   }
212 
reserve(unsigned N)213   void reserve(unsigned N) {
214     if (N > Capacity * BITWORD_SIZE)
215       grow(N);
216   }
217 
218   // Set, reset, flip
set()219   BitVector &set() {
220     init_words(Bits, Capacity, true);
221     clear_unused_bits();
222     return *this;
223   }
224 
set(unsigned Idx)225   BitVector &set(unsigned Idx) {
226     assert(Bits && "Bits never allocated");
227     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
228     return *this;
229   }
230 
231   /// set - Efficiently set a range of bits in [I, E)
set(unsigned I,unsigned E)232   BitVector &set(unsigned I, unsigned E) {
233     assert(I <= E && "Attempted to set backwards range!");
234     assert(E <= size() && "Attempted to set out-of-bounds range!");
235 
236     if (I == E) return *this;
237 
238     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
239       BitWord EMask = 1UL << (E % BITWORD_SIZE);
240       BitWord IMask = 1UL << (I % BITWORD_SIZE);
241       BitWord Mask = EMask - IMask;
242       Bits[I / BITWORD_SIZE] |= Mask;
243       return *this;
244     }
245 
246     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
247     Bits[I / BITWORD_SIZE] |= PrefixMask;
248     I = alignTo(I, BITWORD_SIZE);
249 
250     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
251       Bits[I / BITWORD_SIZE] = ~0UL;
252 
253     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
254     if (I < E)
255       Bits[I / BITWORD_SIZE] |= PostfixMask;
256 
257     return *this;
258   }
259 
reset()260   BitVector &reset() {
261     init_words(Bits, Capacity, false);
262     return *this;
263   }
264 
reset(unsigned Idx)265   BitVector &reset(unsigned Idx) {
266     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
267     return *this;
268   }
269 
270   /// reset - Efficiently reset a range of bits in [I, E)
reset(unsigned I,unsigned E)271   BitVector &reset(unsigned I, unsigned E) {
272     assert(I <= E && "Attempted to reset backwards range!");
273     assert(E <= size() && "Attempted to reset out-of-bounds range!");
274 
275     if (I == E) return *this;
276 
277     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
278       BitWord EMask = 1UL << (E % BITWORD_SIZE);
279       BitWord IMask = 1UL << (I % BITWORD_SIZE);
280       BitWord Mask = EMask - IMask;
281       Bits[I / BITWORD_SIZE] &= ~Mask;
282       return *this;
283     }
284 
285     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
286     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
287     I = alignTo(I, BITWORD_SIZE);
288 
289     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
290       Bits[I / BITWORD_SIZE] = 0UL;
291 
292     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
293     if (I < E)
294       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
295 
296     return *this;
297   }
298 
flip()299   BitVector &flip() {
300     for (unsigned i = 0; i < NumBitWords(size()); ++i)
301       Bits[i] = ~Bits[i];
302     clear_unused_bits();
303     return *this;
304   }
305 
flip(unsigned Idx)306   BitVector &flip(unsigned Idx) {
307     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
308     return *this;
309   }
310 
311   // Indexing.
312   reference operator[](unsigned Idx) {
313     assert (Idx < Size && "Out-of-bounds Bit access.");
314     return reference(*this, Idx);
315   }
316 
317   bool operator[](unsigned Idx) const {
318     assert (Idx < Size && "Out-of-bounds Bit access.");
319     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
320     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
321   }
322 
test(unsigned Idx)323   bool test(unsigned Idx) const {
324     return (*this)[Idx];
325   }
326 
327   /// Test if any common bits are set.
anyCommon(const BitVector & RHS)328   bool anyCommon(const BitVector &RHS) const {
329     unsigned ThisWords = NumBitWords(size());
330     unsigned RHSWords  = NumBitWords(RHS.size());
331     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
332       if (Bits[i] & RHS.Bits[i])
333         return true;
334     return false;
335   }
336 
337   // Comparison operators.
338   bool operator==(const BitVector &RHS) const {
339     unsigned ThisWords = NumBitWords(size());
340     unsigned RHSWords  = NumBitWords(RHS.size());
341     unsigned i;
342     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
343       if (Bits[i] != RHS.Bits[i])
344         return false;
345 
346     // Verify that any extra words are all zeros.
347     if (i != ThisWords) {
348       for (; i != ThisWords; ++i)
349         if (Bits[i])
350           return false;
351     } else if (i != RHSWords) {
352       for (; i != RHSWords; ++i)
353         if (RHS.Bits[i])
354           return false;
355     }
356     return true;
357   }
358 
359   bool operator!=(const BitVector &RHS) const {
360     return !(*this == RHS);
361   }
362 
363   /// Intersection, union, disjoint union.
364   BitVector &operator&=(const BitVector &RHS) {
365     unsigned ThisWords = NumBitWords(size());
366     unsigned RHSWords  = NumBitWords(RHS.size());
367     unsigned i;
368     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
369       Bits[i] &= RHS.Bits[i];
370 
371     // Any bits that are just in this bitvector become zero, because they aren't
372     // in the RHS bit vector.  Any words only in RHS are ignored because they
373     // are already zero in the LHS.
374     for (; i != ThisWords; ++i)
375       Bits[i] = 0;
376 
377     return *this;
378   }
379 
380   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
reset(const BitVector & RHS)381   BitVector &reset(const BitVector &RHS) {
382     unsigned ThisWords = NumBitWords(size());
383     unsigned RHSWords  = NumBitWords(RHS.size());
384     unsigned i;
385     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
386       Bits[i] &= ~RHS.Bits[i];
387     return *this;
388   }
389 
390   /// test - Check if (This - RHS) is zero.
391   /// This is the same as reset(RHS) and any().
test(const BitVector & RHS)392   bool test(const BitVector &RHS) const {
393     unsigned ThisWords = NumBitWords(size());
394     unsigned RHSWords  = NumBitWords(RHS.size());
395     unsigned i;
396     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
397       if ((Bits[i] & ~RHS.Bits[i]) != 0)
398         return true;
399 
400     for (; i != ThisWords ; ++i)
401       if (Bits[i] != 0)
402         return true;
403 
404     return false;
405   }
406 
407   BitVector &operator|=(const BitVector &RHS) {
408     if (size() < RHS.size())
409       resize(RHS.size());
410     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
411       Bits[i] |= RHS.Bits[i];
412     return *this;
413   }
414 
415   BitVector &operator^=(const BitVector &RHS) {
416     if (size() < RHS.size())
417       resize(RHS.size());
418     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
419       Bits[i] ^= RHS.Bits[i];
420     return *this;
421   }
422 
423   // Assignment operator.
424   const BitVector &operator=(const BitVector &RHS) {
425     if (this == &RHS) return *this;
426 
427     Size = RHS.size();
428     unsigned RHSWords = NumBitWords(Size);
429     if (Size <= Capacity * BITWORD_SIZE) {
430       if (Size)
431         std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
432       clear_unused_bits();
433       return *this;
434     }
435 
436     // Grow the bitvector to have enough elements.
437     Capacity = RHSWords;
438     assert(Capacity > 0 && "negative capacity?");
439     BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
440     std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
441 
442     // Destroy the old bits.
443     std::free(Bits);
444     Bits = NewBits;
445 
446     return *this;
447   }
448 
449   const BitVector &operator=(BitVector &&RHS) {
450     if (this == &RHS) return *this;
451 
452     std::free(Bits);
453     Bits = RHS.Bits;
454     Size = RHS.Size;
455     Capacity = RHS.Capacity;
456 
457     RHS.Bits = nullptr;
458     RHS.Size = RHS.Capacity = 0;
459 
460     return *this;
461   }
462 
swap(BitVector & RHS)463   void swap(BitVector &RHS) {
464     std::swap(Bits, RHS.Bits);
465     std::swap(Size, RHS.Size);
466     std::swap(Capacity, RHS.Capacity);
467   }
468 
469   //===--------------------------------------------------------------------===//
470   // Portable bit mask operations.
471   //===--------------------------------------------------------------------===//
472   //
473   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
474   // fixed word size makes it easier to work with literal bit vector constants
475   // in portable code.
476   //
477   // The LSB in each word is the lowest numbered bit.  The size of a portable
478   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
479   // given, the bit mask is assumed to cover the entire BitVector.
480 
481   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
482   /// This computes "*this |= Mask".
483   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
484     applyMask<true, false>(Mask, MaskWords);
485   }
486 
487   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
488   /// Don't resize. This computes "*this &= ~Mask".
489   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
490     applyMask<false, false>(Mask, MaskWords);
491   }
492 
493   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
494   /// Don't resize.  This computes "*this |= ~Mask".
495   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
496     applyMask<true, true>(Mask, MaskWords);
497   }
498 
499   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
500   /// Don't resize.  This computes "*this &= Mask".
501   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
502     applyMask<false, true>(Mask, MaskWords);
503   }
504 
505 private:
NumBitWords(unsigned S)506   unsigned NumBitWords(unsigned S) const {
507     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
508   }
509 
510   // Set the unused bits in the high words.
511   void set_unused_bits(bool t = true) {
512     //  Set high words first.
513     unsigned UsedWords = NumBitWords(Size);
514     if (Capacity > UsedWords)
515       init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
516 
517     //  Then set any stray high bits of the last used word.
518     unsigned ExtraBits = Size % BITWORD_SIZE;
519     if (ExtraBits) {
520       BitWord ExtraBitMask = ~0UL << ExtraBits;
521       if (t)
522         Bits[UsedWords-1] |= ExtraBitMask;
523       else
524         Bits[UsedWords-1] &= ~ExtraBitMask;
525     }
526   }
527 
528   // Clear the unused bits in the high words.
clear_unused_bits()529   void clear_unused_bits() {
530     set_unused_bits(false);
531   }
532 
grow(unsigned NewSize)533   void grow(unsigned NewSize) {
534     Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
535     assert(Capacity > 0 && "realloc-ing zero space");
536     Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
537 
538     clear_unused_bits();
539   }
540 
init_words(BitWord * B,unsigned NumWords,bool t)541   void init_words(BitWord *B, unsigned NumWords, bool t) {
542     memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
543   }
544 
545   template<bool AddBits, bool InvertMask>
applyMask(const uint32_t * Mask,unsigned MaskWords)546   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
547     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
548     MaskWords = std::min(MaskWords, (size() + 31) / 32);
549     const unsigned Scale = BITWORD_SIZE / 32;
550     unsigned i;
551     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
552       BitWord BW = Bits[i];
553       // This inner loop should unroll completely when BITWORD_SIZE > 32.
554       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
555         uint32_t M = *Mask++;
556         if (InvertMask) M = ~M;
557         if (AddBits) BW |=   BitWord(M) << b;
558         else         BW &= ~(BitWord(M) << b);
559       }
560       Bits[i] = BW;
561     }
562     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
563       uint32_t M = *Mask++;
564       if (InvertMask) M = ~M;
565       if (AddBits) Bits[i] |=   BitWord(M) << b;
566       else         Bits[i] &= ~(BitWord(M) << b);
567     }
568     if (AddBits)
569       clear_unused_bits();
570   }
571 
572 public:
573   /// Return the size (in bytes) of the bit vector.
getMemorySize()574   size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
575 };
576 
capacity_in_bytes(const BitVector & X)577 static inline size_t capacity_in_bytes(const BitVector &X) {
578   return X.getMemorySize();
579 }
580 
581 } // end namespace llvm
582 
583 namespace std {
584   /// Implement std::swap in terms of BitVector swap.
585   inline void
swap(llvm::BitVector & LHS,llvm::BitVector & RHS)586   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
587     LHS.swap(RHS);
588   }
589 } // end namespace std
590 
591 #endif // LLVM_ADT_BITVECTOR_H
592