1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <climits>
21 #include <cstdint>
22 #include <cstdlib>
23 #include <cstring>
24
25 namespace llvm {
26
27 class BitVector {
28 typedef unsigned long BitWord;
29
30 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31
32 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
33 "Unsupported word size");
34
35 BitWord *Bits; // Actual bits.
36 unsigned Size; // Size of bitvector in bits.
37 unsigned Capacity; // Number of BitWords allocated in the Bits array.
38
39 public:
40 typedef unsigned size_type;
41 // Encapsulation of a single bit.
42 class reference {
43 friend class BitVector;
44
45 BitWord *WordRef;
46 unsigned BitPos;
47
48 reference(); // Undefined
49
50 public:
reference(BitVector & b,unsigned Idx)51 reference(BitVector &b, unsigned Idx) {
52 WordRef = &b.Bits[Idx / BITWORD_SIZE];
53 BitPos = Idx % BITWORD_SIZE;
54 }
55
56 reference(const reference&) = default;
57
58 reference &operator=(reference t) {
59 *this = bool(t);
60 return *this;
61 }
62
63 reference& operator=(bool t) {
64 if (t)
65 *WordRef |= BitWord(1) << BitPos;
66 else
67 *WordRef &= ~(BitWord(1) << BitPos);
68 return *this;
69 }
70
71 operator bool() const {
72 return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
73 }
74 };
75
76
77 /// BitVector default ctor - Creates an empty bitvector.
BitVector()78 BitVector() : Size(0), Capacity(0) {
79 Bits = nullptr;
80 }
81
82 /// BitVector ctor - Creates a bitvector of specified number of bits. All
83 /// bits are initialized to the specified value.
Size(s)84 explicit BitVector(unsigned s, bool t = false) : Size(s) {
85 Capacity = NumBitWords(s);
86 Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
87 init_words(Bits, Capacity, t);
88 if (t)
89 clear_unused_bits();
90 }
91
92 /// BitVector copy ctor.
BitVector(const BitVector & RHS)93 BitVector(const BitVector &RHS) : Size(RHS.size()) {
94 if (Size == 0) {
95 Bits = nullptr;
96 Capacity = 0;
97 return;
98 }
99
100 Capacity = NumBitWords(RHS.size());
101 Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
102 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
103 }
104
BitVector(BitVector && RHS)105 BitVector(BitVector &&RHS)
106 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
107 RHS.Bits = nullptr;
108 RHS.Size = RHS.Capacity = 0;
109 }
110
~BitVector()111 ~BitVector() {
112 std::free(Bits);
113 }
114
115 /// empty - Tests whether there are no bits in this bitvector.
empty()116 bool empty() const { return Size == 0; }
117
118 /// size - Returns the number of bits in this bitvector.
size()119 size_type size() const { return Size; }
120
121 /// count - Returns the number of bits which are set.
count()122 size_type count() const {
123 unsigned NumBits = 0;
124 for (unsigned i = 0; i < NumBitWords(size()); ++i)
125 NumBits += countPopulation(Bits[i]);
126 return NumBits;
127 }
128
129 /// any - Returns true if any bit is set.
any()130 bool any() const {
131 for (unsigned i = 0; i < NumBitWords(size()); ++i)
132 if (Bits[i] != 0)
133 return true;
134 return false;
135 }
136
137 /// all - Returns true if all bits are set.
all()138 bool all() const {
139 for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
140 if (Bits[i] != ~0UL)
141 return false;
142
143 // If bits remain check that they are ones. The unused bits are always zero.
144 if (unsigned Remainder = Size % BITWORD_SIZE)
145 return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
146
147 return true;
148 }
149
150 /// none - Returns true if none of the bits are set.
none()151 bool none() const {
152 return !any();
153 }
154
155 /// find_first - Returns the index of the first set bit, -1 if none
156 /// of the bits are set.
find_first()157 int find_first() const {
158 for (unsigned i = 0; i < NumBitWords(size()); ++i)
159 if (Bits[i] != 0)
160 return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
161 return -1;
162 }
163
164 /// find_next - Returns the index of the next set bit following the
165 /// "Prev" bit. Returns -1 if the next set bit is not found.
find_next(unsigned Prev)166 int find_next(unsigned Prev) const {
167 ++Prev;
168 if (Prev >= Size)
169 return -1;
170
171 unsigned WordPos = Prev / BITWORD_SIZE;
172 unsigned BitPos = Prev % BITWORD_SIZE;
173 BitWord Copy = Bits[WordPos];
174 // Mask off previous bits.
175 Copy &= ~0UL << BitPos;
176
177 if (Copy != 0)
178 return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
179
180 // Check subsequent words.
181 for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
182 if (Bits[i] != 0)
183 return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
184 return -1;
185 }
186
187 /// clear - Clear all bits.
clear()188 void clear() {
189 Size = 0;
190 }
191
192 /// resize - Grow or shrink the bitvector.
193 void resize(unsigned N, bool t = false) {
194 if (N > Capacity * BITWORD_SIZE) {
195 unsigned OldCapacity = Capacity;
196 grow(N);
197 init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
198 }
199
200 // Set any old unused bits that are now included in the BitVector. This
201 // may set bits that are not included in the new vector, but we will clear
202 // them back out below.
203 if (N > Size)
204 set_unused_bits(t);
205
206 // Update the size, and clear out any bits that are now unused
207 unsigned OldSize = Size;
208 Size = N;
209 if (t || N < OldSize)
210 clear_unused_bits();
211 }
212
reserve(unsigned N)213 void reserve(unsigned N) {
214 if (N > Capacity * BITWORD_SIZE)
215 grow(N);
216 }
217
218 // Set, reset, flip
set()219 BitVector &set() {
220 init_words(Bits, Capacity, true);
221 clear_unused_bits();
222 return *this;
223 }
224
set(unsigned Idx)225 BitVector &set(unsigned Idx) {
226 assert(Bits && "Bits never allocated");
227 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
228 return *this;
229 }
230
231 /// set - Efficiently set a range of bits in [I, E)
set(unsigned I,unsigned E)232 BitVector &set(unsigned I, unsigned E) {
233 assert(I <= E && "Attempted to set backwards range!");
234 assert(E <= size() && "Attempted to set out-of-bounds range!");
235
236 if (I == E) return *this;
237
238 if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
239 BitWord EMask = 1UL << (E % BITWORD_SIZE);
240 BitWord IMask = 1UL << (I % BITWORD_SIZE);
241 BitWord Mask = EMask - IMask;
242 Bits[I / BITWORD_SIZE] |= Mask;
243 return *this;
244 }
245
246 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
247 Bits[I / BITWORD_SIZE] |= PrefixMask;
248 I = alignTo(I, BITWORD_SIZE);
249
250 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
251 Bits[I / BITWORD_SIZE] = ~0UL;
252
253 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
254 if (I < E)
255 Bits[I / BITWORD_SIZE] |= PostfixMask;
256
257 return *this;
258 }
259
reset()260 BitVector &reset() {
261 init_words(Bits, Capacity, false);
262 return *this;
263 }
264
reset(unsigned Idx)265 BitVector &reset(unsigned Idx) {
266 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
267 return *this;
268 }
269
270 /// reset - Efficiently reset a range of bits in [I, E)
reset(unsigned I,unsigned E)271 BitVector &reset(unsigned I, unsigned E) {
272 assert(I <= E && "Attempted to reset backwards range!");
273 assert(E <= size() && "Attempted to reset out-of-bounds range!");
274
275 if (I == E) return *this;
276
277 if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
278 BitWord EMask = 1UL << (E % BITWORD_SIZE);
279 BitWord IMask = 1UL << (I % BITWORD_SIZE);
280 BitWord Mask = EMask - IMask;
281 Bits[I / BITWORD_SIZE] &= ~Mask;
282 return *this;
283 }
284
285 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
286 Bits[I / BITWORD_SIZE] &= ~PrefixMask;
287 I = alignTo(I, BITWORD_SIZE);
288
289 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
290 Bits[I / BITWORD_SIZE] = 0UL;
291
292 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
293 if (I < E)
294 Bits[I / BITWORD_SIZE] &= ~PostfixMask;
295
296 return *this;
297 }
298
flip()299 BitVector &flip() {
300 for (unsigned i = 0; i < NumBitWords(size()); ++i)
301 Bits[i] = ~Bits[i];
302 clear_unused_bits();
303 return *this;
304 }
305
flip(unsigned Idx)306 BitVector &flip(unsigned Idx) {
307 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
308 return *this;
309 }
310
311 // Indexing.
312 reference operator[](unsigned Idx) {
313 assert (Idx < Size && "Out-of-bounds Bit access.");
314 return reference(*this, Idx);
315 }
316
317 bool operator[](unsigned Idx) const {
318 assert (Idx < Size && "Out-of-bounds Bit access.");
319 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
320 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
321 }
322
test(unsigned Idx)323 bool test(unsigned Idx) const {
324 return (*this)[Idx];
325 }
326
327 /// Test if any common bits are set.
anyCommon(const BitVector & RHS)328 bool anyCommon(const BitVector &RHS) const {
329 unsigned ThisWords = NumBitWords(size());
330 unsigned RHSWords = NumBitWords(RHS.size());
331 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
332 if (Bits[i] & RHS.Bits[i])
333 return true;
334 return false;
335 }
336
337 // Comparison operators.
338 bool operator==(const BitVector &RHS) const {
339 unsigned ThisWords = NumBitWords(size());
340 unsigned RHSWords = NumBitWords(RHS.size());
341 unsigned i;
342 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
343 if (Bits[i] != RHS.Bits[i])
344 return false;
345
346 // Verify that any extra words are all zeros.
347 if (i != ThisWords) {
348 for (; i != ThisWords; ++i)
349 if (Bits[i])
350 return false;
351 } else if (i != RHSWords) {
352 for (; i != RHSWords; ++i)
353 if (RHS.Bits[i])
354 return false;
355 }
356 return true;
357 }
358
359 bool operator!=(const BitVector &RHS) const {
360 return !(*this == RHS);
361 }
362
363 /// Intersection, union, disjoint union.
364 BitVector &operator&=(const BitVector &RHS) {
365 unsigned ThisWords = NumBitWords(size());
366 unsigned RHSWords = NumBitWords(RHS.size());
367 unsigned i;
368 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
369 Bits[i] &= RHS.Bits[i];
370
371 // Any bits that are just in this bitvector become zero, because they aren't
372 // in the RHS bit vector. Any words only in RHS are ignored because they
373 // are already zero in the LHS.
374 for (; i != ThisWords; ++i)
375 Bits[i] = 0;
376
377 return *this;
378 }
379
380 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
reset(const BitVector & RHS)381 BitVector &reset(const BitVector &RHS) {
382 unsigned ThisWords = NumBitWords(size());
383 unsigned RHSWords = NumBitWords(RHS.size());
384 unsigned i;
385 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
386 Bits[i] &= ~RHS.Bits[i];
387 return *this;
388 }
389
390 /// test - Check if (This - RHS) is zero.
391 /// This is the same as reset(RHS) and any().
test(const BitVector & RHS)392 bool test(const BitVector &RHS) const {
393 unsigned ThisWords = NumBitWords(size());
394 unsigned RHSWords = NumBitWords(RHS.size());
395 unsigned i;
396 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
397 if ((Bits[i] & ~RHS.Bits[i]) != 0)
398 return true;
399
400 for (; i != ThisWords ; ++i)
401 if (Bits[i] != 0)
402 return true;
403
404 return false;
405 }
406
407 BitVector &operator|=(const BitVector &RHS) {
408 if (size() < RHS.size())
409 resize(RHS.size());
410 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
411 Bits[i] |= RHS.Bits[i];
412 return *this;
413 }
414
415 BitVector &operator^=(const BitVector &RHS) {
416 if (size() < RHS.size())
417 resize(RHS.size());
418 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
419 Bits[i] ^= RHS.Bits[i];
420 return *this;
421 }
422
423 // Assignment operator.
424 const BitVector &operator=(const BitVector &RHS) {
425 if (this == &RHS) return *this;
426
427 Size = RHS.size();
428 unsigned RHSWords = NumBitWords(Size);
429 if (Size <= Capacity * BITWORD_SIZE) {
430 if (Size)
431 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
432 clear_unused_bits();
433 return *this;
434 }
435
436 // Grow the bitvector to have enough elements.
437 Capacity = RHSWords;
438 assert(Capacity > 0 && "negative capacity?");
439 BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
440 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
441
442 // Destroy the old bits.
443 std::free(Bits);
444 Bits = NewBits;
445
446 return *this;
447 }
448
449 const BitVector &operator=(BitVector &&RHS) {
450 if (this == &RHS) return *this;
451
452 std::free(Bits);
453 Bits = RHS.Bits;
454 Size = RHS.Size;
455 Capacity = RHS.Capacity;
456
457 RHS.Bits = nullptr;
458 RHS.Size = RHS.Capacity = 0;
459
460 return *this;
461 }
462
swap(BitVector & RHS)463 void swap(BitVector &RHS) {
464 std::swap(Bits, RHS.Bits);
465 std::swap(Size, RHS.Size);
466 std::swap(Capacity, RHS.Capacity);
467 }
468
469 //===--------------------------------------------------------------------===//
470 // Portable bit mask operations.
471 //===--------------------------------------------------------------------===//
472 //
473 // These methods all operate on arrays of uint32_t, each holding 32 bits. The
474 // fixed word size makes it easier to work with literal bit vector constants
475 // in portable code.
476 //
477 // The LSB in each word is the lowest numbered bit. The size of a portable
478 // bit mask is always a whole multiple of 32 bits. If no bit mask size is
479 // given, the bit mask is assumed to cover the entire BitVector.
480
481 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
482 /// This computes "*this |= Mask".
483 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
484 applyMask<true, false>(Mask, MaskWords);
485 }
486
487 /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
488 /// Don't resize. This computes "*this &= ~Mask".
489 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
490 applyMask<false, false>(Mask, MaskWords);
491 }
492
493 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
494 /// Don't resize. This computes "*this |= ~Mask".
495 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
496 applyMask<true, true>(Mask, MaskWords);
497 }
498
499 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
500 /// Don't resize. This computes "*this &= Mask".
501 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
502 applyMask<false, true>(Mask, MaskWords);
503 }
504
505 private:
NumBitWords(unsigned S)506 unsigned NumBitWords(unsigned S) const {
507 return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
508 }
509
510 // Set the unused bits in the high words.
511 void set_unused_bits(bool t = true) {
512 // Set high words first.
513 unsigned UsedWords = NumBitWords(Size);
514 if (Capacity > UsedWords)
515 init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
516
517 // Then set any stray high bits of the last used word.
518 unsigned ExtraBits = Size % BITWORD_SIZE;
519 if (ExtraBits) {
520 BitWord ExtraBitMask = ~0UL << ExtraBits;
521 if (t)
522 Bits[UsedWords-1] |= ExtraBitMask;
523 else
524 Bits[UsedWords-1] &= ~ExtraBitMask;
525 }
526 }
527
528 // Clear the unused bits in the high words.
clear_unused_bits()529 void clear_unused_bits() {
530 set_unused_bits(false);
531 }
532
grow(unsigned NewSize)533 void grow(unsigned NewSize) {
534 Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
535 assert(Capacity > 0 && "realloc-ing zero space");
536 Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
537
538 clear_unused_bits();
539 }
540
init_words(BitWord * B,unsigned NumWords,bool t)541 void init_words(BitWord *B, unsigned NumWords, bool t) {
542 memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
543 }
544
545 template<bool AddBits, bool InvertMask>
applyMask(const uint32_t * Mask,unsigned MaskWords)546 void applyMask(const uint32_t *Mask, unsigned MaskWords) {
547 static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
548 MaskWords = std::min(MaskWords, (size() + 31) / 32);
549 const unsigned Scale = BITWORD_SIZE / 32;
550 unsigned i;
551 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
552 BitWord BW = Bits[i];
553 // This inner loop should unroll completely when BITWORD_SIZE > 32.
554 for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
555 uint32_t M = *Mask++;
556 if (InvertMask) M = ~M;
557 if (AddBits) BW |= BitWord(M) << b;
558 else BW &= ~(BitWord(M) << b);
559 }
560 Bits[i] = BW;
561 }
562 for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
563 uint32_t M = *Mask++;
564 if (InvertMask) M = ~M;
565 if (AddBits) Bits[i] |= BitWord(M) << b;
566 else Bits[i] &= ~(BitWord(M) << b);
567 }
568 if (AddBits)
569 clear_unused_bits();
570 }
571
572 public:
573 /// Return the size (in bytes) of the bit vector.
getMemorySize()574 size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
575 };
576
capacity_in_bytes(const BitVector & X)577 static inline size_t capacity_in_bytes(const BitVector &X) {
578 return X.getMemorySize();
579 }
580
581 } // end namespace llvm
582
583 namespace std {
584 /// Implement std::swap in terms of BitVector swap.
585 inline void
swap(llvm::BitVector & LHS,llvm::BitVector & RHS)586 swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
587 LHS.swap(RHS);
588 }
589 } // end namespace std
590
591 #endif // LLVM_ADT_BITVECTOR_H
592