1 //===- BasicAliasAnalysis.h - Stateless, local Alias Analysis ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This is the interface for LLVM's primary stateless and local alias analysis.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BASICALIASANALYSIS_H
15 #define LLVM_ANALYSIS_BASICALIASANALYSIS_H
16 
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Support/ErrorHandling.h"
28 
29 namespace llvm {
30 class AssumptionCache;
31 class DominatorTree;
32 class LoopInfo;
33 
34 /// This is the AA result object for the basic, local, and stateless alias
35 /// analysis. It implements the AA query interface in an entirely stateless
36 /// manner. As one consequence, it is never invalidated. While it does retain
37 /// some storage, that is used as an optimization and not to preserve
38 /// information from query to query.
39 class BasicAAResult : public AAResultBase<BasicAAResult> {
40   friend AAResultBase<BasicAAResult>;
41 
42   const DataLayout &DL;
43   const TargetLibraryInfo &TLI;
44   AssumptionCache &AC;
45   DominatorTree *DT;
46   LoopInfo *LI;
47 
48 public:
49   BasicAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI,
50                 AssumptionCache &AC, DominatorTree *DT = nullptr,
51                 LoopInfo *LI = nullptr)
AAResultBase()52       : AAResultBase(), DL(DL), TLI(TLI), AC(AC), DT(DT), LI(LI) {}
53 
BasicAAResult(const BasicAAResult & Arg)54   BasicAAResult(const BasicAAResult &Arg)
55       : AAResultBase(Arg), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
56         LI(Arg.LI) {}
BasicAAResult(BasicAAResult && Arg)57   BasicAAResult(BasicAAResult &&Arg)
58       : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC),
59         DT(Arg.DT), LI(Arg.LI) {}
60 
61   /// Handle invalidation events from the new pass manager.
62   ///
63   /// By definition, this result is stateless and so remains valid.
invalidate(Function &,const PreservedAnalyses &)64   bool invalidate(Function &, const PreservedAnalyses &) { return false; }
65 
66   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
67 
68   ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
69 
70   ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
71 
72   /// Chases pointers until we find a (constant global) or not.
73   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal);
74 
75   /// Get the location associated with a pointer argument of a callsite.
76   ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
77 
78   /// Returns the behavior when calling the given call site.
79   FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
80 
81   /// Returns the behavior when calling the given function. For use when the
82   /// call site is not known.
83   FunctionModRefBehavior getModRefBehavior(const Function *F);
84 
85 private:
86   // A linear transformation of a Value; this class represents ZExt(SExt(V,
87   // SExtBits), ZExtBits) * Scale + Offset.
88   struct VariableGEPIndex {
89 
90     // An opaque Value - we can't decompose this further.
91     const Value *V;
92 
93     // We need to track what extensions we've done as we consider the same Value
94     // with different extensions as different variables in a GEP's linear
95     // expression;
96     // e.g.: if V == -1, then sext(x) != zext(x).
97     unsigned ZExtBits;
98     unsigned SExtBits;
99 
100     int64_t Scale;
101 
102     bool operator==(const VariableGEPIndex &Other) const {
103       return V == Other.V && ZExtBits == Other.ZExtBits &&
104              SExtBits == Other.SExtBits && Scale == Other.Scale;
105     }
106 
107     bool operator!=(const VariableGEPIndex &Other) const {
108       return !operator==(Other);
109     }
110   };
111 
112   // Represents the internal structure of a GEP, decomposed into a base pointer,
113   // constant offsets, and variable scaled indices.
114   struct DecomposedGEP {
115     // Base pointer of the GEP
116     const Value *Base;
117     // Total constant offset w.r.t the base from indexing into structs
118     int64_t StructOffset;
119     // Total constant offset w.r.t the base from indexing through
120     // pointers/arrays/vectors
121     int64_t OtherOffset;
122     // Scaled variable (non-constant) indices.
123     SmallVector<VariableGEPIndex, 4> VarIndices;
124   };
125 
126   /// Track alias queries to guard against recursion.
127   typedef std::pair<MemoryLocation, MemoryLocation> LocPair;
128   typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
129   AliasCacheTy AliasCache;
130 
131   /// Tracks phi nodes we have visited.
132   ///
133   /// When interpret "Value" pointer equality as value equality we need to make
134   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
135   /// come from different "iterations" of a cycle and see different values for
136   /// the same "Value" pointer.
137   ///
138   /// The following example shows the problem:
139   ///   %p = phi(%alloca1, %addr2)
140   ///   %l = load %ptr
141   ///   %addr1 = gep, %alloca2, 0, %l
142   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
143   ///      alias(%p, %addr1) -> MayAlias !
144   ///   store %l, ...
145   SmallPtrSet<const BasicBlock *, 8> VisitedPhiBBs;
146 
147   /// Tracks instructions visited by pointsToConstantMemory.
148   SmallPtrSet<const Value *, 16> Visited;
149 
150   static const Value *
151   GetLinearExpression(const Value *V, APInt &Scale, APInt &Offset,
152                       unsigned &ZExtBits, unsigned &SExtBits,
153                       const DataLayout &DL, unsigned Depth, AssumptionCache *AC,
154                       DominatorTree *DT, bool &NSW, bool &NUW);
155 
156   static bool DecomposeGEPExpression(const Value *V, DecomposedGEP &Decomposed,
157       const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT);
158 
159   static bool isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
160       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
161       uint64_t ObjectAccessSize);
162 
163   /// \brief A Heuristic for aliasGEP that searches for a constant offset
164   /// between the variables.
165   ///
166   /// GetLinearExpression has some limitations, as generally zext(%x + 1)
167   /// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression
168   /// will therefore conservatively refuse to decompose these expressions.
169   /// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if
170   /// the addition overflows.
171   bool
172   constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> &VarIndices,
173                           uint64_t V1Size, uint64_t V2Size, int64_t BaseOffset,
174                           AssumptionCache *AC, DominatorTree *DT);
175 
176   bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
177 
178   void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
179                           const SmallVectorImpl<VariableGEPIndex> &Src);
180 
181   AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
182                        const AAMDNodes &V1AAInfo, const Value *V2,
183                        uint64_t V2Size, const AAMDNodes &V2AAInfo,
184                        const Value *UnderlyingV1, const Value *UnderlyingV2);
185 
186   AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
187                        const AAMDNodes &PNAAInfo, const Value *V2,
188                        uint64_t V2Size, const AAMDNodes &V2AAInfo);
189 
190   AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
191                           const AAMDNodes &SIAAInfo, const Value *V2,
192                           uint64_t V2Size, const AAMDNodes &V2AAInfo);
193 
194   AliasResult aliasCheck(const Value *V1, uint64_t V1Size, AAMDNodes V1AATag,
195                          const Value *V2, uint64_t V2Size, AAMDNodes V2AATag);
196 };
197 
198 /// Analysis pass providing a never-invalidated alias analysis result.
199 class BasicAA : public AnalysisInfoMixin<BasicAA> {
200   friend AnalysisInfoMixin<BasicAA>;
201   static char PassID;
202 
203 public:
204   typedef BasicAAResult Result;
205 
206   BasicAAResult run(Function &F, AnalysisManager<Function> &AM);
207 };
208 
209 /// Legacy wrapper pass to provide the BasicAAResult object.
210 class BasicAAWrapperPass : public FunctionPass {
211   std::unique_ptr<BasicAAResult> Result;
212 
213   virtual void anchor();
214 
215 public:
216   static char ID;
217 
218   BasicAAWrapperPass();
219 
getResult()220   BasicAAResult &getResult() { return *Result; }
getResult()221   const BasicAAResult &getResult() const { return *Result; }
222 
223   bool runOnFunction(Function &F) override;
224   void getAnalysisUsage(AnalysisUsage &AU) const override;
225 };
226 
227 FunctionPass *createBasicAAWrapperPass();
228 
229 /// A helper for the legacy pass manager to create a \c BasicAAResult object
230 /// populated to the best of our ability for a particular function when inside
231 /// of a \c ModulePass or a \c CallGraphSCCPass.
232 BasicAAResult createLegacyPMBasicAAResult(Pass &P, Function &F);
233 }
234 
235 #endif
236