1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
11 // categorize scalar expressions in loops.  It specializes in recognizing
12 // general induction variables, representing them with the abstract and opaque
13 // SCEV class.  Given this analysis, trip counts of loops and other important
14 // properties can be obtained.
15 //
16 // This analysis is primarily useful for induction variable substitution and
17 // strength reduction.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
23 
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/FoldingSet.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueMap.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Allocator.h"
36 #include "llvm/Support/DataTypes.h"
37 
38 namespace llvm {
39   class APInt;
40   class AssumptionCache;
41   class Constant;
42   class ConstantInt;
43   class DominatorTree;
44   class Type;
45   class ScalarEvolution;
46   class DataLayout;
47   class TargetLibraryInfo;
48   class LLVMContext;
49   class Operator;
50   class SCEV;
51   class SCEVAddRecExpr;
52   class SCEVConstant;
53   class SCEVExpander;
54   class SCEVPredicate;
55   class SCEVUnknown;
56   class Function;
57 
58   template <> struct FoldingSetTrait<SCEV>;
59   template <> struct FoldingSetTrait<SCEVPredicate>;
60 
61   /// This class represents an analyzed expression in the program.  These are
62   /// opaque objects that the client is not allowed to do much with directly.
63   ///
64   class SCEV : public FoldingSetNode {
65     friend struct FoldingSetTrait<SCEV>;
66 
67     /// A reference to an Interned FoldingSetNodeID for this node.  The
68     /// ScalarEvolution's BumpPtrAllocator holds the data.
69     FoldingSetNodeIDRef FastID;
70 
71     // The SCEV baseclass this node corresponds to
72     const unsigned short SCEVType;
73 
74   protected:
75     /// This field is initialized to zero and may be used in subclasses to store
76     /// miscellaneous information.
77     unsigned short SubclassData;
78 
79   private:
80     SCEV(const SCEV &) = delete;
81     void operator=(const SCEV &) = delete;
82 
83   public:
84     /// NoWrapFlags are bitfield indices into SubclassData.
85     ///
86     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
87     /// no-signed-wrap <NSW> properties, which are derived from the IR
88     /// operator. NSW is a misnomer that we use to mean no signed overflow or
89     /// underflow.
90     ///
91     /// AddRec expressions may have a no-self-wraparound <NW> property if, in
92     /// the integer domain, abs(step) * max-iteration(loop) <=
93     /// unsigned-max(bitwidth).  This means that the recurrence will never reach
94     /// its start value if the step is non-zero.  Computing the same value on
95     /// each iteration is not considered wrapping, and recurrences with step = 0
96     /// are trivially <NW>.  <NW> is independent of the sign of step and the
97     /// value the add recurrence starts with.
98     ///
99     /// Note that NUW and NSW are also valid properties of a recurrence, and
100     /// either implies NW. For convenience, NW will be set for a recurrence
101     /// whenever either NUW or NSW are set.
102     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
103                        FlagNW      = (1 << 0),   // No self-wrap.
104                        FlagNUW     = (1 << 1),   // No unsigned wrap.
105                        FlagNSW     = (1 << 2),   // No signed wrap.
106                        NoWrapMask  = (1 << 3) -1 };
107 
108     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
109       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
110 
111     unsigned getSCEVType() const { return SCEVType; }
112 
113     /// Return the LLVM type of this SCEV expression.
114     ///
115     Type *getType() const;
116 
117     /// Return true if the expression is a constant zero.
118     ///
119     bool isZero() const;
120 
121     /// Return true if the expression is a constant one.
122     ///
123     bool isOne() const;
124 
125     /// Return true if the expression is a constant all-ones value.
126     ///
127     bool isAllOnesValue() const;
128 
129     /// Return true if the specified scev is negated, but not a constant.
130     bool isNonConstantNegative() const;
131 
132     /// Print out the internal representation of this scalar to the specified
133     /// stream.  This should really only be used for debugging purposes.
134     void print(raw_ostream &OS) const;
135 
136     /// This method is used for debugging.
137     ///
138     void dump() const;
139   };
140 
141   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
142   // temporary FoldingSetNodeID values.
143   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
144     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
145       ID = X.FastID;
146     }
147     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
148                        unsigned IDHash, FoldingSetNodeID &TempID) {
149       return ID == X.FastID;
150     }
151     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
152       return X.FastID.ComputeHash();
153     }
154   };
155 
156   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
157     S.print(OS);
158     return OS;
159   }
160 
161   /// An object of this class is returned by queries that could not be answered.
162   /// For example, if you ask for the number of iterations of a linked-list
163   /// traversal loop, you will get one of these.  None of the standard SCEV
164   /// operations are valid on this class, it is just a marker.
165   struct SCEVCouldNotCompute : public SCEV {
166     SCEVCouldNotCompute();
167 
168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
169     static bool classof(const SCEV *S);
170   };
171 
172   /// This class represents an assumption made using SCEV expressions which can
173   /// be checked at run-time.
174   class SCEVPredicate : public FoldingSetNode {
175     friend struct FoldingSetTrait<SCEVPredicate>;
176 
177     /// A reference to an Interned FoldingSetNodeID for this node.  The
178     /// ScalarEvolution's BumpPtrAllocator holds the data.
179     FoldingSetNodeIDRef FastID;
180 
181   public:
182     enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
183 
184   protected:
185     SCEVPredicateKind Kind;
186     ~SCEVPredicate() = default;
187     SCEVPredicate(const SCEVPredicate&) = default;
188     SCEVPredicate &operator=(const SCEVPredicate&) = default;
189 
190   public:
191     SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
192 
193     SCEVPredicateKind getKind() const { return Kind; }
194 
195     /// Returns the estimated complexity of this predicate.  This is roughly
196     /// measured in the number of run-time checks required.
197     virtual unsigned getComplexity() const { return 1; }
198 
199     /// Returns true if the predicate is always true. This means that no
200     /// assumptions were made and nothing needs to be checked at run-time.
201     virtual bool isAlwaysTrue() const = 0;
202 
203     /// Returns true if this predicate implies \p N.
204     virtual bool implies(const SCEVPredicate *N) const = 0;
205 
206     /// Prints a textual representation of this predicate with an indentation of
207     /// \p Depth.
208     virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
209 
210     /// Returns the SCEV to which this predicate applies, or nullptr if this is
211     /// a SCEVUnionPredicate.
212     virtual const SCEV *getExpr() const = 0;
213   };
214 
215   inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
216     P.print(OS);
217     return OS;
218   }
219 
220   // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
221   // temporary FoldingSetNodeID values.
222   template <>
223   struct FoldingSetTrait<SCEVPredicate>
224       : DefaultFoldingSetTrait<SCEVPredicate> {
225 
226     static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
227       ID = X.FastID;
228     }
229 
230     static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
231                        unsigned IDHash, FoldingSetNodeID &TempID) {
232       return ID == X.FastID;
233     }
234     static unsigned ComputeHash(const SCEVPredicate &X,
235                                 FoldingSetNodeID &TempID) {
236       return X.FastID.ComputeHash();
237     }
238   };
239 
240   /// This class represents an assumption that two SCEV expressions are equal,
241   /// and this can be checked at run-time. We assume that the left hand side is
242   /// a SCEVUnknown and the right hand side a constant.
243   class SCEVEqualPredicate final : public SCEVPredicate {
244     /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
245     /// constant.
246     const SCEVUnknown *LHS;
247     const SCEVConstant *RHS;
248 
249   public:
250     SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
251                        const SCEVConstant *RHS);
252 
253     /// Implementation of the SCEVPredicate interface
254     bool implies(const SCEVPredicate *N) const override;
255     void print(raw_ostream &OS, unsigned Depth = 0) const override;
256     bool isAlwaysTrue() const override;
257     const SCEV *getExpr() const override;
258 
259     /// Returns the left hand side of the equality.
260     const SCEVUnknown *getLHS() const { return LHS; }
261 
262     /// Returns the right hand side of the equality.
263     const SCEVConstant *getRHS() const { return RHS; }
264 
265     /// Methods for support type inquiry through isa, cast, and dyn_cast:
266     static inline bool classof(const SCEVPredicate *P) {
267       return P->getKind() == P_Equal;
268     }
269   };
270 
271   /// This class represents an assumption made on an AddRec expression. Given an
272   /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
273   /// flags (defined below) in the first X iterations of the loop, where X is a
274   /// SCEV expression returned by getPredicatedBackedgeTakenCount).
275   ///
276   /// Note that this does not imply that X is equal to the backedge taken
277   /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
278   /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
279   /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
280   /// have more than X iterations.
281   class SCEVWrapPredicate final : public SCEVPredicate {
282   public:
283     /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
284     /// for FlagNUSW. The increment is considered to be signed, and a + b
285     /// (where b is the increment) is considered to wrap if:
286     ///    zext(a + b) != zext(a) + sext(b)
287     ///
288     /// If Signed is a function that takes an n-bit tuple and maps to the
289     /// integer domain as the tuples value interpreted as twos complement,
290     /// and Unsigned a function that takes an n-bit tuple and maps to the
291     /// integer domain as as the base two value of input tuple, then a + b
292     /// has IncrementNUSW iff:
293     ///
294     /// 0 <= Unsigned(a) + Signed(b) < 2^n
295     ///
296     /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
297     ///
298     /// Note that the IncrementNUSW flag is not commutative: if base + inc
299     /// has IncrementNUSW, then inc + base doesn't neccessarily have this
300     /// property. The reason for this is that this is used for sign/zero
301     /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
302     /// assumed. A {base,+,inc} expression is already non-commutative with
303     /// regards to base and inc, since it is interpreted as:
304     ///     (((base + inc) + inc) + inc) ...
305     enum IncrementWrapFlags {
306       IncrementAnyWrap = 0,     // No guarantee.
307       IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
308       IncrementNSSW = (1 << 1), // No signed with signed increment wrap
309                                 // (equivalent with SCEV::NSW)
310       IncrementNoWrapMask = (1 << 2) - 1
311     };
312 
313     /// Convenient IncrementWrapFlags manipulation methods.
314     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
315     clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
316                SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
317       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
318       assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
319              "Invalid flags value!");
320       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
321     }
322 
323     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
324     maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
325       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
326       assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
327 
328       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
329     }
330 
331     static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
332     setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
333              SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
334       assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
335       assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
336              "Invalid flags value!");
337 
338       return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
339     }
340 
341     /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
342     /// SCEVAddRecExpr.
343     static SCEVWrapPredicate::IncrementWrapFlags
344     getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
345 
346   private:
347     const SCEVAddRecExpr *AR;
348     IncrementWrapFlags Flags;
349 
350   public:
351     explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
352                                const SCEVAddRecExpr *AR,
353                                IncrementWrapFlags Flags);
354 
355     /// Returns the set assumed no overflow flags.
356     IncrementWrapFlags getFlags() const { return Flags; }
357     /// Implementation of the SCEVPredicate interface
358     const SCEV *getExpr() const override;
359     bool implies(const SCEVPredicate *N) const override;
360     void print(raw_ostream &OS, unsigned Depth = 0) const override;
361     bool isAlwaysTrue() const override;
362 
363     /// Methods for support type inquiry through isa, cast, and dyn_cast:
364     static inline bool classof(const SCEVPredicate *P) {
365       return P->getKind() == P_Wrap;
366     }
367   };
368 
369   /// This class represents a composition of other SCEV predicates, and is the
370   /// class that most clients will interact with.  This is equivalent to a
371   /// logical "AND" of all the predicates in the union.
372   class SCEVUnionPredicate final : public SCEVPredicate {
373   private:
374     typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
375         PredicateMap;
376 
377     /// Vector with references to all predicates in this union.
378     SmallVector<const SCEVPredicate *, 16> Preds;
379     /// Maps SCEVs to predicates for quick look-ups.
380     PredicateMap SCEVToPreds;
381 
382   public:
383     SCEVUnionPredicate();
384 
385     const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
386       return Preds;
387     }
388 
389     /// Adds a predicate to this union.
390     void add(const SCEVPredicate *N);
391 
392     /// Returns a reference to a vector containing all predicates which apply to
393     /// \p Expr.
394     ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
395 
396     /// Implementation of the SCEVPredicate interface
397     bool isAlwaysTrue() const override;
398     bool implies(const SCEVPredicate *N) const override;
399     void print(raw_ostream &OS, unsigned Depth) const override;
400     const SCEV *getExpr() const override;
401 
402     /// We estimate the complexity of a union predicate as the size number of
403     /// predicates in the union.
404     unsigned getComplexity() const override { return Preds.size(); }
405 
406     /// Methods for support type inquiry through isa, cast, and dyn_cast:
407     static inline bool classof(const SCEVPredicate *P) {
408       return P->getKind() == P_Union;
409     }
410   };
411 
412   /// The main scalar evolution driver. Because client code (intentionally)
413   /// can't do much with the SCEV objects directly, they must ask this class
414   /// for services.
415   class ScalarEvolution {
416   public:
417     /// An enum describing the relationship between a SCEV and a loop.
418     enum LoopDisposition {
419       LoopVariant,    ///< The SCEV is loop-variant (unknown).
420       LoopInvariant,  ///< The SCEV is loop-invariant.
421       LoopComputable  ///< The SCEV varies predictably with the loop.
422     };
423 
424     /// An enum describing the relationship between a SCEV and a basic block.
425     enum BlockDisposition {
426       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
427       DominatesBlock,        ///< The SCEV dominates the block.
428       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
429     };
430 
431     /// Convenient NoWrapFlags manipulation that hides enum casts and is
432     /// visible in the ScalarEvolution name space.
433     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
434     maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
435       return (SCEV::NoWrapFlags)(Flags & Mask);
436     }
437     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
438     setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
439       return (SCEV::NoWrapFlags)(Flags | OnFlags);
440     }
441     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
442     clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
443       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
444     }
445 
446   private:
447     /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
448     /// Value is deleted.
449     class SCEVCallbackVH final : public CallbackVH {
450       ScalarEvolution *SE;
451       void deleted() override;
452       void allUsesReplacedWith(Value *New) override;
453     public:
454       SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
455     };
456 
457     friend class SCEVCallbackVH;
458     friend class SCEVExpander;
459     friend class SCEVUnknown;
460 
461     /// The function we are analyzing.
462     ///
463     Function &F;
464 
465     /// Does the module have any calls to the llvm.experimental.guard intrinsic
466     /// at all?  If this is false, we avoid doing work that will only help if
467     /// thare are guards present in the IR.
468     ///
469     bool HasGuards;
470 
471     /// The target library information for the target we are targeting.
472     ///
473     TargetLibraryInfo &TLI;
474 
475     /// The tracker for @llvm.assume intrinsics in this function.
476     AssumptionCache &AC;
477 
478     /// The dominator tree.
479     ///
480     DominatorTree &DT;
481 
482     /// The loop information for the function we are currently analyzing.
483     ///
484     LoopInfo &LI;
485 
486     /// This SCEV is used to represent unknown trip counts and things.
487     std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
488 
489     /// The typedef for HasRecMap.
490     ///
491     typedef DenseMap<const SCEV *, bool> HasRecMapType;
492 
493     /// This is a cache to record whether a SCEV contains any scAddRecExpr.
494     HasRecMapType HasRecMap;
495 
496     /// The typedef for ExprValueMap.
497     ///
498     typedef DenseMap<const SCEV *, SetVector<Value *>> ExprValueMapType;
499 
500     /// ExprValueMap -- This map records the original values from which
501     /// the SCEV expr is generated from.
502     ExprValueMapType ExprValueMap;
503 
504     /// The typedef for ValueExprMap.
505     ///
506     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
507       ValueExprMapType;
508 
509     /// This is a cache of the values we have analyzed so far.
510     ///
511     ValueExprMapType ValueExprMap;
512 
513     /// Mark predicate values currently being processed by isImpliedCond.
514     DenseSet<Value*> PendingLoopPredicates;
515 
516     /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
517     /// conditions dominating the backedge of a loop.
518     bool WalkingBEDominatingConds;
519 
520     /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
521     /// predicate by splitting it into a set of independent predicates.
522     bool ProvingSplitPredicate;
523 
524     /// Information about the number of loop iterations for which a loop exit's
525     /// branch condition evaluates to the not-taken path.  This is a temporary
526     /// pair of exact and max expressions that are eventually summarized in
527     /// ExitNotTakenInfo and BackedgeTakenInfo.
528     struct ExitLimit {
529       const SCEV *Exact;
530       const SCEV *Max;
531 
532       /// A predicate union guard for this ExitLimit. The result is only
533       /// valid if this predicate evaluates to 'true' at run-time.
534       SCEVUnionPredicate Pred;
535 
536       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
537 
538       ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
539           : Exact(E), Max(M), Pred(P) {
540         assert((isa<SCEVCouldNotCompute>(Exact) ||
541                 !isa<SCEVCouldNotCompute>(Max)) &&
542                "Exact is not allowed to be less precise than Max");
543       }
544 
545       /// Test whether this ExitLimit contains any computed information, or
546       /// whether it's all SCEVCouldNotCompute values.
547       bool hasAnyInfo() const {
548         return !isa<SCEVCouldNotCompute>(Exact) ||
549           !isa<SCEVCouldNotCompute>(Max);
550       }
551 
552       /// Test whether this ExitLimit contains all information.
553       bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(Exact); }
554     };
555 
556     /// Forward declaration of ExitNotTakenExtras
557     struct ExitNotTakenExtras;
558 
559     /// Information about the number of times a particular loop exit may be
560     /// reached before exiting the loop.
561     struct ExitNotTakenInfo {
562       AssertingVH<BasicBlock> ExitingBlock;
563       const SCEV *ExactNotTaken;
564 
565       ExitNotTakenExtras *ExtraInfo;
566       bool Complete;
567 
568       ExitNotTakenInfo()
569           : ExitingBlock(nullptr), ExactNotTaken(nullptr), ExtraInfo(nullptr),
570             Complete(true) {}
571 
572       ExitNotTakenInfo(BasicBlock *ExitBlock, const SCEV *Expr,
573                        ExitNotTakenExtras *Ptr)
574           : ExitingBlock(ExitBlock), ExactNotTaken(Expr), ExtraInfo(Ptr),
575             Complete(true) {}
576 
577       /// Return true if all loop exits are computable.
578       bool isCompleteList() const { return Complete; }
579 
580       /// Sets the incomplete property, indicating that one of the loop exits
581       /// doesn't have a corresponding ExitNotTakenInfo entry.
582       void setIncomplete() { Complete = false; }
583 
584       /// Returns a pointer to the predicate associated with this information,
585       /// or nullptr if this doesn't exist (meaning always true).
586       SCEVUnionPredicate *getPred() const {
587         if (ExtraInfo)
588           return &ExtraInfo->Pred;
589 
590         return nullptr;
591       }
592 
593       /// Return true if the SCEV predicate associated with this information
594       /// is always true.
595       bool hasAlwaysTruePred() const {
596         return !getPred() || getPred()->isAlwaysTrue();
597       }
598 
599       /// Defines a simple forward iterator for ExitNotTakenInfo.
600       class ExitNotTakenInfoIterator
601           : public std::iterator<std::forward_iterator_tag, ExitNotTakenInfo> {
602         const ExitNotTakenInfo *Start;
603         unsigned Position;
604 
605       public:
606         ExitNotTakenInfoIterator(const ExitNotTakenInfo *Start,
607                                  unsigned Position)
608             : Start(Start), Position(Position) {}
609 
610         const ExitNotTakenInfo &operator*() const {
611           if (Position == 0)
612             return *Start;
613 
614           return Start->ExtraInfo->Exits[Position - 1];
615         }
616 
617         const ExitNotTakenInfo *operator->() const {
618           if (Position == 0)
619             return Start;
620 
621           return &Start->ExtraInfo->Exits[Position - 1];
622         }
623 
624         bool operator==(const ExitNotTakenInfoIterator &RHS) const {
625           return Start == RHS.Start && Position == RHS.Position;
626         }
627 
628         bool operator!=(const ExitNotTakenInfoIterator &RHS) const {
629           return Start != RHS.Start || Position != RHS.Position;
630         }
631 
632         ExitNotTakenInfoIterator &operator++() { // Preincrement
633           if (!Start)
634             return *this;
635 
636           unsigned Elements =
637               Start->ExtraInfo ? Start->ExtraInfo->Exits.size() + 1 : 1;
638 
639           ++Position;
640 
641           // We've run out of elements.
642           if (Position == Elements) {
643             Start = nullptr;
644             Position = 0;
645           }
646 
647           return *this;
648         }
649         ExitNotTakenInfoIterator operator++(int) { // Postincrement
650           ExitNotTakenInfoIterator Tmp = *this;
651           ++*this;
652           return Tmp;
653         }
654       };
655 
656       /// Iterators
657       ExitNotTakenInfoIterator begin() const {
658         return ExitNotTakenInfoIterator(this, 0);
659       }
660       ExitNotTakenInfoIterator end() const {
661         return ExitNotTakenInfoIterator(nullptr, 0);
662       }
663     };
664 
665     /// Describes the extra information that a ExitNotTakenInfo can have.
666     struct ExitNotTakenExtras {
667       /// The predicate associated with the ExitNotTakenInfo struct.
668       SCEVUnionPredicate Pred;
669 
670       /// The extra exits in the loop. Only the ExitNotTakenExtras structure
671       /// pointed to by the first ExitNotTakenInfo struct (associated with the
672       /// first loop exit) will populate this vector to prevent having
673       /// redundant information.
674       SmallVector<ExitNotTakenInfo, 4> Exits;
675     };
676 
677     /// A struct containing the information attached to a backedge.
678     struct EdgeInfo {
679       EdgeInfo(BasicBlock *Block, const SCEV *Taken, SCEVUnionPredicate &P) :
680           ExitBlock(Block), Taken(Taken), Pred(std::move(P)) {}
681 
682       /// The exit basic block.
683       BasicBlock *ExitBlock;
684 
685       /// The (exact) number of time we take the edge back.
686       const SCEV *Taken;
687 
688       /// The SCEV predicated associated with Taken. If Pred doesn't evaluate
689       /// to true, the information in Taken is not valid (or equivalent with
690       /// a CouldNotCompute.
691       SCEVUnionPredicate Pred;
692     };
693 
694     /// Information about the backedge-taken count of a loop. This currently
695     /// includes an exact count and a maximum count.
696     ///
697     class BackedgeTakenInfo {
698       /// A list of computable exits and their not-taken counts.  Loops almost
699       /// never have more than one computable exit.
700       ExitNotTakenInfo ExitNotTaken;
701 
702       /// An expression indicating the least maximum backedge-taken count of the
703       /// loop that is known, or a SCEVCouldNotCompute. This expression is only
704       /// valid if the predicates associated with all loop exits are true.
705       const SCEV *Max;
706 
707     public:
708       BackedgeTakenInfo() : Max(nullptr) {}
709 
710       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
711       BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete,
712                         const SCEV *MaxCount);
713 
714       /// Test whether this BackedgeTakenInfo contains any computed information,
715       /// or whether it's all SCEVCouldNotCompute values.
716       bool hasAnyInfo() const {
717         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
718       }
719 
720       /// Test whether this BackedgeTakenInfo contains complete information.
721       bool hasFullInfo() const { return ExitNotTaken.isCompleteList(); }
722 
723       /// Return an expression indicating the exact backedge-taken count of the
724       /// loop if it is known or SCEVCouldNotCompute otherwise. This is the
725       /// number of times the loop header can be guaranteed to execute, minus
726       /// one.
727       ///
728       /// If the SCEV predicate associated with the answer can be different
729       /// from AlwaysTrue, we must add a (non null) Predicates argument.
730       /// The SCEV predicate associated with the answer will be added to
731       /// Predicates. A run-time check needs to be emitted for the SCEV
732       /// predicate in order for the answer to be valid.
733       ///
734       /// Note that we should always know if we need to pass a predicate
735       /// argument or not from the way the ExitCounts vector was computed.
736       /// If we allowed SCEV predicates to be generated when populating this
737       /// vector, this information can contain them and therefore a
738       /// SCEVPredicate argument should be added to getExact.
739       const SCEV *getExact(ScalarEvolution *SE,
740                            SCEVUnionPredicate *Predicates = nullptr) const;
741 
742       /// Return the number of times this loop exit may fall through to the back
743       /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
744       /// this block before this number of iterations, but may exit via another
745       /// block.
746       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
747 
748       /// Get the max backedge taken count for the loop.
749       const SCEV *getMax(ScalarEvolution *SE) const;
750 
751       /// Return true if any backedge taken count expressions refer to the given
752       /// subexpression.
753       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
754 
755       /// Invalidate this result and free associated memory.
756       void clear();
757     };
758 
759     /// Cache the backedge-taken count of the loops for this function as they
760     /// are computed.
761     DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
762 
763     /// Cache the predicated backedge-taken count of the loops for this
764     /// function as they are computed.
765     DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
766 
767     /// This map contains entries for all of the PHI instructions that we
768     /// attempt to compute constant evolutions for.  This allows us to avoid
769     /// potentially expensive recomputation of these properties.  An instruction
770     /// maps to null if we are unable to compute its exit value.
771     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
772 
773     /// This map contains entries for all the expressions that we attempt to
774     /// compute getSCEVAtScope information for, which can be expensive in
775     /// extreme cases.
776     DenseMap<const SCEV *,
777              SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
778 
779     /// Memoized computeLoopDisposition results.
780     DenseMap<const SCEV *,
781              SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
782         LoopDispositions;
783 
784     /// Cache for \c loopHasNoAbnormalExits.
785     DenseMap<const Loop *, bool> LoopHasNoAbnormalExits;
786 
787     /// Returns true if \p L contains no instruction that can abnormally exit
788     /// the loop (i.e. via throwing an exception, by terminating the thread
789     /// cleanly or by infinite looping in a called function).  Strictly
790     /// speaking, the last one is not leaving the loop, but is identical to
791     /// leaving the loop for reasoning about undefined behavior.
792     bool loopHasNoAbnormalExits(const Loop *L);
793 
794     /// Compute a LoopDisposition value.
795     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
796 
797     /// Memoized computeBlockDisposition results.
798     DenseMap<
799         const SCEV *,
800         SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
801         BlockDispositions;
802 
803     /// Compute a BlockDisposition value.
804     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
805 
806     /// Memoized results from getRange
807     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
808 
809     /// Memoized results from getRange
810     DenseMap<const SCEV *, ConstantRange> SignedRanges;
811 
812     /// Used to parameterize getRange
813     enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
814 
815     /// Set the memoized range for the given SCEV.
816     const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
817                                   const ConstantRange &CR) {
818       DenseMap<const SCEV *, ConstantRange> &Cache =
819           Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
820 
821       auto Pair = Cache.insert({S, CR});
822       if (!Pair.second)
823         Pair.first->second = CR;
824       return Pair.first->second;
825     }
826 
827     /// Determine the range for a particular SCEV.
828     ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
829 
830     /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
831     /// Helper for \c getRange.
832     ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
833                                       const SCEV *MaxBECount,
834                                       unsigned BitWidth);
835 
836     /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
837     /// Stop} by "factoring out" a ternary expression from the add recurrence.
838     /// Helper called by \c getRange.
839     ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
840                                        const SCEV *MaxBECount,
841                                        unsigned BitWidth);
842 
843     /// We know that there is no SCEV for the specified value.  Analyze the
844     /// expression.
845     const SCEV *createSCEV(Value *V);
846 
847     /// Provide the special handling we need to analyze PHI SCEVs.
848     const SCEV *createNodeForPHI(PHINode *PN);
849 
850     /// Helper function called from createNodeForPHI.
851     const SCEV *createAddRecFromPHI(PHINode *PN);
852 
853     /// Helper function called from createNodeForPHI.
854     const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
855 
856     /// Provide special handling for a select-like instruction (currently this
857     /// is either a select instruction or a phi node).  \p I is the instruction
858     /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
859     /// FalseVal".
860     const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
861                                          Value *TrueVal, Value *FalseVal);
862 
863     /// Provide the special handling we need to analyze GEP SCEVs.
864     const SCEV *createNodeForGEP(GEPOperator *GEP);
865 
866     /// Implementation code for getSCEVAtScope; called at most once for each
867     /// SCEV+Loop pair.
868     ///
869     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
870 
871     /// This looks up computed SCEV values for all instructions that depend on
872     /// the given instruction and removes them from the ValueExprMap map if they
873     /// reference SymName. This is used during PHI resolution.
874     void forgetSymbolicName(Instruction *I, const SCEV *SymName);
875 
876     /// Return the BackedgeTakenInfo for the given loop, lazily computing new
877     /// values if the loop hasn't been analyzed yet. The returned result is
878     /// guaranteed not to be predicated.
879     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
880 
881     /// Similar to getBackedgeTakenInfo, but will add predicates as required
882     /// with the purpose of returning complete information.
883     const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
884 
885     /// Compute the number of times the specified loop will iterate.
886     /// If AllowPredicates is set, we will create new SCEV predicates as
887     /// necessary in order to return an exact answer.
888     BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
889                                                 bool AllowPredicates = false);
890 
891     /// Compute the number of times the backedge of the specified loop will
892     /// execute if it exits via the specified block. If AllowPredicates is set,
893     /// this call will try to use a minimal set of SCEV predicates in order to
894     /// return an exact answer.
895     ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
896                                bool AllowPredicates = false);
897 
898     /// Compute the number of times the backedge of the specified loop will
899     /// execute if its exit condition were a conditional branch of ExitCond,
900     /// TBB, and FBB.
901     ///
902     /// \p ControlsExit is true if ExitCond directly controls the exit
903     /// branch. In this case, we can assume that the loop exits only if the
904     /// condition is true and can infer that failing to meet the condition prior
905     /// to integer wraparound results in undefined behavior.
906     ///
907     /// If \p AllowPredicates is set, this call will try to use a minimal set of
908     /// SCEV predicates in order to return an exact answer.
909     ExitLimit computeExitLimitFromCond(const Loop *L,
910                                        Value *ExitCond,
911                                        BasicBlock *TBB,
912                                        BasicBlock *FBB,
913                                        bool ControlsExit,
914                                        bool AllowPredicates = false);
915 
916     /// Compute the number of times the backedge of the specified loop will
917     /// execute if its exit condition were a conditional branch of the ICmpInst
918     /// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
919     /// to use a minimal set of SCEV predicates in order to return an exact
920     /// answer.
921     ExitLimit computeExitLimitFromICmp(const Loop *L,
922                                        ICmpInst *ExitCond,
923                                        BasicBlock *TBB,
924                                        BasicBlock *FBB,
925                                        bool IsSubExpr,
926                                        bool AllowPredicates = false);
927 
928     /// Compute the number of times the backedge of the specified loop will
929     /// execute if its exit condition were a switch with a single exiting case
930     /// to ExitingBB.
931     ExitLimit
932     computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
933                                BasicBlock *ExitingBB, bool IsSubExpr);
934 
935     /// Given an exit condition of 'icmp op load X, cst', try to see if we can
936     /// compute the backedge-taken count.
937     ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
938                                                   Constant *RHS,
939                                                   const Loop *L,
940                                                   ICmpInst::Predicate p);
941 
942     /// Compute the exit limit of a loop that is controlled by a
943     /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
944     /// count in these cases (since SCEV has no way of expressing them), but we
945     /// can still sometimes compute an upper bound.
946     ///
947     /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
948     /// RHS`.
949     ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
950                                            const Loop *L,
951                                            ICmpInst::Predicate Pred);
952 
953     /// If the loop is known to execute a constant number of times (the
954     /// condition evolves only from constants), try to evaluate a few iterations
955     /// of the loop until we get the exit condition gets a value of ExitWhen
956     /// (true or false).  If we cannot evaluate the exit count of the loop,
957     /// return CouldNotCompute.
958     const SCEV *computeExitCountExhaustively(const Loop *L,
959                                              Value *Cond,
960                                              bool ExitWhen);
961 
962     /// Return the number of times an exit condition comparing the specified
963     /// value to zero will execute.  If not computable, return CouldNotCompute.
964     /// If AllowPredicates is set, this call will try to use a minimal set of
965     /// SCEV predicates in order to return an exact answer.
966     ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
967                            bool AllowPredicates = false);
968 
969     /// Return the number of times an exit condition checking the specified
970     /// value for nonzero will execute.  If not computable, return
971     /// CouldNotCompute.
972     ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
973 
974     /// Return the number of times an exit condition containing the specified
975     /// less-than comparison will execute.  If not computable, return
976     /// CouldNotCompute.
977     ///
978     /// \p isSigned specifies whether the less-than is signed.
979     ///
980     /// \p ControlsExit is true when the LHS < RHS condition directly controls
981     /// the branch (loops exits only if condition is true). In this case, we can
982     /// use NoWrapFlags to skip overflow checks.
983     ///
984     /// If \p AllowPredicates is set, this call will try to use a minimal set of
985     /// SCEV predicates in order to return an exact answer.
986     ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
987                                bool isSigned, bool ControlsExit,
988                                bool AllowPredicates = false);
989 
990     ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
991                                   const Loop *L, bool isSigned, bool IsSubExpr,
992                                   bool AllowPredicates = false);
993 
994     /// Return a predecessor of BB (which may not be an immediate predecessor)
995     /// which has exactly one successor from which BB is reachable, or null if
996     /// no such block is found.
997     std::pair<BasicBlock *, BasicBlock *>
998     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
999 
1000     /// Test whether the condition described by Pred, LHS, and RHS is true
1001     /// whenever the given FoundCondValue value evaluates to true.
1002     bool isImpliedCond(ICmpInst::Predicate Pred,
1003                        const SCEV *LHS, const SCEV *RHS,
1004                        Value *FoundCondValue,
1005                        bool Inverse);
1006 
1007     /// Test whether the condition described by Pred, LHS, and RHS is true
1008     /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1009     /// true.
1010     bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
1011                        const SCEV *RHS, ICmpInst::Predicate FoundPred,
1012                        const SCEV *FoundLHS, const SCEV *FoundRHS);
1013 
1014     /// Test whether the condition described by Pred, LHS, and RHS is true
1015     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1016     /// true.
1017     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
1018                                const SCEV *LHS, const SCEV *RHS,
1019                                const SCEV *FoundLHS, const SCEV *FoundRHS);
1020 
1021     /// Test whether the condition described by Pred, LHS, and RHS is true
1022     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1023     /// true.
1024     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
1025                                      const SCEV *LHS, const SCEV *RHS,
1026                                      const SCEV *FoundLHS,
1027                                      const SCEV *FoundRHS);
1028 
1029     /// Test whether the condition described by Pred, LHS, and RHS is true
1030     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1031     /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1032     /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1033     bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
1034                                         const SCEV *LHS, const SCEV *RHS,
1035                                         const SCEV *FoundLHS,
1036                                         const SCEV *FoundRHS);
1037 
1038     /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1039     /// by a call to \c @llvm.experimental.guard in \p BB.
1040     bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
1041                            const SCEV *LHS, const SCEV *RHS);
1042 
1043     /// Test whether the condition described by Pred, LHS, and RHS is true
1044     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1045     /// true.
1046     ///
1047     /// This routine tries to rule out certain kinds of integer overflow, and
1048     /// then tries to reason about arithmetic properties of the predicates.
1049     bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1050                                             const SCEV *LHS, const SCEV *RHS,
1051                                             const SCEV *FoundLHS,
1052                                             const SCEV *FoundRHS);
1053 
1054     /// If we know that the specified Phi is in the header of its containing
1055     /// loop, we know the loop executes a constant number of times, and the PHI
1056     /// node is just a recurrence involving constants, fold it.
1057     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
1058                                                 const Loop *L);
1059 
1060     /// Test if the given expression is known to satisfy the condition described
1061     /// by Pred and the known constant ranges of LHS and RHS.
1062     ///
1063     bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1064                                            const SCEV *LHS, const SCEV *RHS);
1065 
1066     /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1067     /// integer overflow.
1068     ///
1069     /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1070     /// positive.
1071     bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
1072                                        const SCEV *LHS, const SCEV *RHS);
1073 
1074     /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1075     /// prove them individually.
1076     bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1077                                       const SCEV *RHS);
1078 
1079     /// Try to match the Expr as "(L + R)<Flags>".
1080     bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1081                         SCEV::NoWrapFlags &Flags);
1082 
1083     /// Return true if More == (Less + C), where C is a constant.  This is
1084     /// intended to be used as a cheaper substitute for full SCEV subtraction.
1085     bool computeConstantDifference(const SCEV *Less, const SCEV *More,
1086                                    APInt &C);
1087 
1088     /// Drop memoized information computed for S.
1089     void forgetMemoizedResults(const SCEV *S);
1090 
1091     /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1092     const SCEV *getExistingSCEV(Value *V);
1093 
1094     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1095     /// pointer.
1096     bool checkValidity(const SCEV *S) const;
1097 
1098     /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1099     /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1100     /// equivalent to proving no signed (resp. unsigned) wrap in
1101     /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1102     /// (resp. `SCEVZeroExtendExpr`).
1103     ///
1104     template<typename ExtendOpTy>
1105     bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1106                                    const Loop *L);
1107 
1108     /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1109     SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1110 
1111     bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
1112                                   ICmpInst::Predicate Pred, bool &Increasing);
1113 
1114     /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
1115     /// is monotonically increasing or decreasing.  In the former case set
1116     /// `Increasing` to true and in the latter case set `Increasing` to false.
1117     ///
1118     /// A predicate is said to be monotonically increasing if may go from being
1119     /// false to being true as the loop iterates, but never the other way
1120     /// around.  A predicate is said to be monotonically decreasing if may go
1121     /// from being true to being false as the loop iterates, but never the other
1122     /// way around.
1123     bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
1124                               ICmpInst::Predicate Pred, bool &Increasing);
1125 
1126     /// Return SCEV no-wrap flags that can be proven based on reasoning about
1127     /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1128     /// would trigger undefined behavior on overflow.
1129     SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1130 
1131     /// Return true if the SCEV corresponding to \p I is never poison.  Proving
1132     /// this is more complex than proving that just \p I is never poison, since
1133     /// SCEV commons expressions across control flow, and you can have cases
1134     /// like:
1135     ///
1136     ///   idx0 = a + b;
1137     ///   ptr[idx0] = 100;
1138     ///   if (<condition>) {
1139     ///     idx1 = a +nsw b;
1140     ///     ptr[idx1] = 200;
1141     ///   }
1142     ///
1143     /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
1144     /// hence not sign-overflow) only if "<condition>" is true.  Since both
1145     /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
1146     /// it is not okay to annotate (+ a b) with <nsw> in the above example.
1147     bool isSCEVExprNeverPoison(const Instruction *I);
1148 
1149     /// This is like \c isSCEVExprNeverPoison but it specifically works for
1150     /// instructions that will get mapped to SCEV add recurrences.  Return true
1151     /// if \p I will never generate poison under the assumption that \p I is an
1152     /// add recurrence on the loop \p L.
1153     bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
1154 
1155   public:
1156     ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
1157                     DominatorTree &DT, LoopInfo &LI);
1158     ~ScalarEvolution();
1159     ScalarEvolution(ScalarEvolution &&Arg);
1160 
1161     LLVMContext &getContext() const { return F.getContext(); }
1162 
1163     /// Test if values of the given type are analyzable within the SCEV
1164     /// framework. This primarily includes integer types, and it can optionally
1165     /// include pointer types if the ScalarEvolution class has access to
1166     /// target-specific information.
1167     bool isSCEVable(Type *Ty) const;
1168 
1169     /// Return the size in bits of the specified type, for which isSCEVable must
1170     /// return true.
1171     uint64_t getTypeSizeInBits(Type *Ty) const;
1172 
1173     /// Return a type with the same bitwidth as the given type and which
1174     /// represents how SCEV will treat the given type, for which isSCEVable must
1175     /// return true. For pointer types, this is the pointer-sized integer type.
1176     Type *getEffectiveSCEVType(Type *Ty) const;
1177 
1178     /// Return true if the SCEV is a scAddRecExpr or it contains
1179     /// scAddRecExpr. The result will be cached in HasRecMap.
1180     ///
1181     bool containsAddRecurrence(const SCEV *S);
1182 
1183     /// Return the Value set from which the SCEV expr is generated.
1184     SetVector<Value *> *getSCEVValues(const SCEV *S);
1185 
1186     /// Erase Value from ValueExprMap and ExprValueMap.
1187     void eraseValueFromMap(Value *V);
1188 
1189     /// Return a SCEV expression for the full generality of the specified
1190     /// expression.
1191     const SCEV *getSCEV(Value *V);
1192 
1193     const SCEV *getConstant(ConstantInt *V);
1194     const SCEV *getConstant(const APInt& Val);
1195     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
1196     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
1197     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
1198     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
1199     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
1200     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1201                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
1202     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
1203                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
1204       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
1205       return getAddExpr(Ops, Flags);
1206     }
1207     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
1208                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
1209       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
1210       return getAddExpr(Ops, Flags);
1211     }
1212     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1213                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
1214     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
1215                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
1216       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
1217       return getMulExpr(Ops, Flags);
1218     }
1219     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
1220                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
1221       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
1222       return getMulExpr(Ops, Flags);
1223     }
1224     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
1225     const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
1226     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
1227                               const Loop *L, SCEV::NoWrapFlags Flags);
1228     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1229                               const Loop *L, SCEV::NoWrapFlags Flags);
1230     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
1231                               const Loop *L, SCEV::NoWrapFlags Flags) {
1232       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
1233       return getAddRecExpr(NewOp, L, Flags);
1234     }
1235     /// Returns an expression for a GEP
1236     ///
1237     /// \p PointeeType The type used as the basis for the pointer arithmetics
1238     /// \p BaseExpr The expression for the pointer operand.
1239     /// \p IndexExprs The expressions for the indices.
1240     /// \p InBounds Whether the GEP is in bounds.
1241     const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
1242                            const SmallVectorImpl<const SCEV *> &IndexExprs,
1243                            bool InBounds = false);
1244     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
1245     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
1246     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
1247     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
1248     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
1249     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
1250     const SCEV *getUnknown(Value *V);
1251     const SCEV *getCouldNotCompute();
1252 
1253     /// Return a SCEV for the constant 0 of a specific type.
1254     const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
1255 
1256     /// Return a SCEV for the constant 1 of a specific type.
1257     const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
1258 
1259     /// Return an expression for sizeof AllocTy that is type IntTy
1260     ///
1261     const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
1262 
1263     /// Return an expression for offsetof on the given field with type IntTy
1264     ///
1265     const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
1266 
1267     /// Return the SCEV object corresponding to -V.
1268     ///
1269     const SCEV *getNegativeSCEV(const SCEV *V,
1270                                 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
1271 
1272     /// Return the SCEV object corresponding to ~V.
1273     ///
1274     const SCEV *getNotSCEV(const SCEV *V);
1275 
1276     /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
1277     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
1278                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
1279 
1280     /// Return a SCEV corresponding to a conversion of the input value to the
1281     /// specified type.  If the type must be extended, it is zero extended.
1282     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
1283 
1284     /// Return a SCEV corresponding to a conversion of the input value to the
1285     /// specified type.  If the type must be extended, it is sign extended.
1286     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
1287 
1288     /// Return a SCEV corresponding to a conversion of the input value to the
1289     /// specified type.  If the type must be extended, it is zero extended.  The
1290     /// conversion must not be narrowing.
1291     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
1292 
1293     /// Return a SCEV corresponding to a conversion of the input value to the
1294     /// specified type.  If the type must be extended, it is sign extended.  The
1295     /// conversion must not be narrowing.
1296     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
1297 
1298     /// Return a SCEV corresponding to a conversion of the input value to the
1299     /// specified type. If the type must be extended, it is extended with
1300     /// unspecified bits. The conversion must not be narrowing.
1301     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
1302 
1303     /// Return a SCEV corresponding to a conversion of the input value to the
1304     /// specified type.  The conversion must not be widening.
1305     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
1306 
1307     /// Promote the operands to the wider of the types using zero-extension, and
1308     /// then perform a umax operation with them.
1309     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
1310                                            const SCEV *RHS);
1311 
1312     /// Promote the operands to the wider of the types using zero-extension, and
1313     /// then perform a umin operation with them.
1314     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
1315                                            const SCEV *RHS);
1316 
1317     /// Transitively follow the chain of pointer-type operands until reaching a
1318     /// SCEV that does not have a single pointer operand. This returns a
1319     /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
1320     /// cases do exist.
1321     const SCEV *getPointerBase(const SCEV *V);
1322 
1323     /// Return a SCEV expression for the specified value at the specified scope
1324     /// in the program.  The L value specifies a loop nest to evaluate the
1325     /// expression at, where null is the top-level or a specified loop is
1326     /// immediately inside of the loop.
1327     ///
1328     /// This method can be used to compute the exit value for a variable defined
1329     /// in a loop by querying what the value will hold in the parent loop.
1330     ///
1331     /// In the case that a relevant loop exit value cannot be computed, the
1332     /// original value V is returned.
1333     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
1334 
1335     /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
1336     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
1337 
1338     /// Test whether entry to the loop is protected by a conditional between LHS
1339     /// and RHS.  This is used to help avoid max expressions in loop trip
1340     /// counts, and to eliminate casts.
1341     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
1342                                   const SCEV *LHS, const SCEV *RHS);
1343 
1344     /// Test whether the backedge of the loop is protected by a conditional
1345     /// between LHS and RHS.  This is used to to eliminate casts.
1346     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
1347                                      const SCEV *LHS, const SCEV *RHS);
1348 
1349     /// Returns the maximum trip count of the loop if it is a single-exit
1350     /// loop and we can compute a small maximum for that loop.
1351     ///
1352     /// Implemented in terms of the \c getSmallConstantTripCount overload with
1353     /// the single exiting block passed to it. See that routine for details.
1354     unsigned getSmallConstantTripCount(Loop *L);
1355 
1356     /// Returns the maximum trip count of this loop as a normal unsigned
1357     /// value. Returns 0 if the trip count is unknown or not constant. This
1358     /// "trip count" assumes that control exits via ExitingBlock. More
1359     /// precisely, it is the number of times that control may reach ExitingBlock
1360     /// before taking the branch. For loops with multiple exits, it may not be
1361     /// the number times that the loop header executes if the loop exits
1362     /// prematurely via another branch.
1363     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
1364 
1365     /// Returns the largest constant divisor of the trip count of the
1366     /// loop if it is a single-exit loop and we can compute a small maximum for
1367     /// that loop.
1368     ///
1369     /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
1370     /// the single exiting block passed to it. See that routine for details.
1371     unsigned getSmallConstantTripMultiple(Loop *L);
1372 
1373     /// Returns the largest constant divisor of the trip count of this loop as a
1374     /// normal unsigned value, if possible. This means that the actual trip
1375     /// count is always a multiple of the returned value (don't forget the trip
1376     /// count could very well be zero as well!). As explained in the comments
1377     /// for getSmallConstantTripCount, this assumes that control exits the loop
1378     /// via ExitingBlock.
1379     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
1380 
1381     /// Get the expression for the number of loop iterations for which this loop
1382     /// is guaranteed not to exit via ExitingBlock. Otherwise return
1383     /// SCEVCouldNotCompute.
1384     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
1385 
1386     /// If the specified loop has a predictable backedge-taken count, return it,
1387     /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
1388     /// is the number of times the loop header will be branched to from within
1389     /// the loop. This is one less than the trip count of the loop, since it
1390     /// doesn't count the first iteration, when the header is branched to from
1391     /// outside the loop.
1392     ///
1393     /// Note that it is not valid to call this method on a loop without a
1394     /// loop-invariant backedge-taken count (see
1395     /// hasLoopInvariantBackedgeTakenCount).
1396     ///
1397     const SCEV *getBackedgeTakenCount(const Loop *L);
1398 
1399     /// Similar to getBackedgeTakenCount, except it will add a set of
1400     /// SCEV predicates to Predicates that are required to be true in order for
1401     /// the answer to be correct. Predicates can be checked with run-time
1402     /// checks and can be used to perform loop versioning.
1403     const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
1404                                                 SCEVUnionPredicate &Predicates);
1405 
1406     /// Similar to getBackedgeTakenCount, except return the least SCEV value
1407     /// that is known never to be less than the actual backedge taken count.
1408     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
1409 
1410     /// Return true if the specified loop has an analyzable loop-invariant
1411     /// backedge-taken count.
1412     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
1413 
1414     /// This method should be called by the client when it has changed a loop in
1415     /// a way that may effect ScalarEvolution's ability to compute a trip count,
1416     /// or if the loop is deleted.  This call is potentially expensive for large
1417     /// loop bodies.
1418     void forgetLoop(const Loop *L);
1419 
1420     /// This method should be called by the client when it has changed a value
1421     /// in a way that may effect its value, or which may disconnect it from a
1422     /// def-use chain linking it to a loop.
1423     void forgetValue(Value *V);
1424 
1425     /// Called when the client has changed the disposition of values in
1426     /// this loop.
1427     ///
1428     /// We don't have a way to invalidate per-loop dispositions. Clear and
1429     /// recompute is simpler.
1430     void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
1431 
1432     /// Determine the minimum number of zero bits that S is guaranteed to end in
1433     /// (at every loop iteration).  It is, at the same time, the minimum number
1434     /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
1435     /// If S is guaranteed to be 0, it returns the bitwidth of S.
1436     uint32_t GetMinTrailingZeros(const SCEV *S);
1437 
1438     /// Determine the unsigned range for a particular SCEV.
1439     ///
1440     ConstantRange getUnsignedRange(const SCEV *S) {
1441       return getRange(S, HINT_RANGE_UNSIGNED);
1442     }
1443 
1444     /// Determine the signed range for a particular SCEV.
1445     ///
1446     ConstantRange getSignedRange(const SCEV *S) {
1447       return getRange(S, HINT_RANGE_SIGNED);
1448     }
1449 
1450     /// Test if the given expression is known to be negative.
1451     ///
1452     bool isKnownNegative(const SCEV *S);
1453 
1454     /// Test if the given expression is known to be positive.
1455     ///
1456     bool isKnownPositive(const SCEV *S);
1457 
1458     /// Test if the given expression is known to be non-negative.
1459     ///
1460     bool isKnownNonNegative(const SCEV *S);
1461 
1462     /// Test if the given expression is known to be non-positive.
1463     ///
1464     bool isKnownNonPositive(const SCEV *S);
1465 
1466     /// Test if the given expression is known to be non-zero.
1467     ///
1468     bool isKnownNonZero(const SCEV *S);
1469 
1470     /// Test if the given expression is known to satisfy the condition described
1471     /// by Pred, LHS, and RHS.
1472     ///
1473     bool isKnownPredicate(ICmpInst::Predicate Pred,
1474                           const SCEV *LHS, const SCEV *RHS);
1475 
1476     /// Return true if the result of the predicate LHS `Pred` RHS is loop
1477     /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
1478     /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
1479     /// loop invariant form of LHS `Pred` RHS.
1480     bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1481                                   const SCEV *RHS, const Loop *L,
1482                                   ICmpInst::Predicate &InvariantPred,
1483                                   const SCEV *&InvariantLHS,
1484                                   const SCEV *&InvariantRHS);
1485 
1486     /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1487     /// iff any changes were made. If the operands are provably equal or
1488     /// unequal, LHS and RHS are set to the same value and Pred is set to either
1489     /// ICMP_EQ or ICMP_NE.
1490     ///
1491     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
1492                               const SCEV *&LHS,
1493                               const SCEV *&RHS,
1494                               unsigned Depth = 0);
1495 
1496     /// Return the "disposition" of the given SCEV with respect to the given
1497     /// loop.
1498     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1499 
1500     /// Return true if the value of the given SCEV is unchanging in the
1501     /// specified loop.
1502     bool isLoopInvariant(const SCEV *S, const Loop *L);
1503 
1504     /// Return true if the given SCEV changes value in a known way in the
1505     /// specified loop.  This property being true implies that the value is
1506     /// variant in the loop AND that we can emit an expression to compute the
1507     /// value of the expression at any particular loop iteration.
1508     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1509 
1510     /// Return the "disposition" of the given SCEV with respect to the given
1511     /// block.
1512     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1513 
1514     /// Return true if elements that makes up the given SCEV dominate the
1515     /// specified basic block.
1516     bool dominates(const SCEV *S, const BasicBlock *BB);
1517 
1518     /// Return true if elements that makes up the given SCEV properly dominate
1519     /// the specified basic block.
1520     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1521 
1522     /// Test whether the given SCEV has Op as a direct or indirect operand.
1523     bool hasOperand(const SCEV *S, const SCEV *Op) const;
1524 
1525     /// Return the size of an element read or written by Inst.
1526     const SCEV *getElementSize(Instruction *Inst);
1527 
1528     /// Compute the array dimensions Sizes from the set of Terms extracted from
1529     /// the memory access function of this SCEVAddRecExpr (second step of
1530     /// delinearization).
1531     void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
1532                              SmallVectorImpl<const SCEV *> &Sizes,
1533                              const SCEV *ElementSize) const;
1534 
1535     void print(raw_ostream &OS) const;
1536     void verify() const;
1537 
1538     /// Collect parametric terms occurring in step expressions (first step of
1539     /// delinearization).
1540     void collectParametricTerms(const SCEV *Expr,
1541                                 SmallVectorImpl<const SCEV *> &Terms);
1542 
1543 
1544 
1545     /// Return in Subscripts the access functions for each dimension in Sizes
1546     /// (third step of delinearization).
1547     void computeAccessFunctions(const SCEV *Expr,
1548                                 SmallVectorImpl<const SCEV *> &Subscripts,
1549                                 SmallVectorImpl<const SCEV *> &Sizes);
1550 
1551     /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1552     /// subscripts and sizes of an array access.
1553     ///
1554     /// The delinearization is a 3 step process: the first two steps compute the
1555     /// sizes of each subscript and the third step computes the access functions
1556     /// for the delinearized array:
1557     ///
1558     /// 1. Find the terms in the step functions
1559     /// 2. Compute the array size
1560     /// 3. Compute the access function: divide the SCEV by the array size
1561     ///    starting with the innermost dimensions found in step 2. The Quotient
1562     ///    is the SCEV to be divided in the next step of the recursion. The
1563     ///    Remainder is the subscript of the innermost dimension. Loop over all
1564     ///    array dimensions computed in step 2.
1565     ///
1566     /// To compute a uniform array size for several memory accesses to the same
1567     /// object, one can collect in step 1 all the step terms for all the memory
1568     /// accesses, and compute in step 2 a unique array shape. This guarantees
1569     /// that the array shape will be the same across all memory accesses.
1570     ///
1571     /// FIXME: We could derive the result of steps 1 and 2 from a description of
1572     /// the array shape given in metadata.
1573     ///
1574     /// Example:
1575     ///
1576     /// A[][n][m]
1577     ///
1578     /// for i
1579     ///   for j
1580     ///     for k
1581     ///       A[j+k][2i][5i] =
1582     ///
1583     /// The initial SCEV:
1584     ///
1585     /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1586     ///
1587     /// 1. Find the different terms in the step functions:
1588     /// -> [2*m, 5, n*m, n*m]
1589     ///
1590     /// 2. Compute the array size: sort and unique them
1591     /// -> [n*m, 2*m, 5]
1592     /// find the GCD of all the terms = 1
1593     /// divide by the GCD and erase constant terms
1594     /// -> [n*m, 2*m]
1595     /// GCD = m
1596     /// divide by GCD -> [n, 2]
1597     /// remove constant terms
1598     /// -> [n]
1599     /// size of the array is A[unknown][n][m]
1600     ///
1601     /// 3. Compute the access function
1602     /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1603     /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1604     /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1605     /// The remainder is the subscript of the innermost array dimension: [5i].
1606     ///
1607     /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1608     /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1609     /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1610     /// The Remainder is the subscript of the next array dimension: [2i].
1611     ///
1612     /// The subscript of the outermost dimension is the Quotient: [j+k].
1613     ///
1614     /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1615     void delinearize(const SCEV *Expr,
1616                      SmallVectorImpl<const SCEV *> &Subscripts,
1617                      SmallVectorImpl<const SCEV *> &Sizes,
1618                      const SCEV *ElementSize);
1619 
1620     /// Return the DataLayout associated with the module this SCEV instance is
1621     /// operating on.
1622     const DataLayout &getDataLayout() const {
1623       return F.getParent()->getDataLayout();
1624     }
1625 
1626     const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
1627                                            const SCEVConstant *RHS);
1628 
1629     const SCEVPredicate *
1630     getWrapPredicate(const SCEVAddRecExpr *AR,
1631                      SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1632 
1633     /// Re-writes the SCEV according to the Predicates in \p A.
1634     const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1635                                       SCEVUnionPredicate &A);
1636     /// Tries to convert the \p S expression to an AddRec expression,
1637     /// adding additional predicates to \p Preds as required.
1638     const SCEVAddRecExpr *
1639     convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
1640                                       SCEVUnionPredicate &Preds);
1641 
1642   private:
1643     /// Compute the backedge taken count knowing the interval difference, the
1644     /// stride and presence of the equality in the comparison.
1645     const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
1646                                bool Equality);
1647 
1648     /// Verify if an linear IV with positive stride can overflow when in a
1649     /// less-than comparison, knowing the invariant term of the comparison,
1650     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1651     bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
1652                             bool IsSigned, bool NoWrap);
1653 
1654     /// Verify if an linear IV with negative stride can overflow when in a
1655     /// greater-than comparison, knowing the invariant term of the comparison,
1656     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1657     bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
1658                             bool IsSigned, bool NoWrap);
1659 
1660   private:
1661     FoldingSet<SCEV> UniqueSCEVs;
1662     FoldingSet<SCEVPredicate> UniquePreds;
1663     BumpPtrAllocator SCEVAllocator;
1664 
1665     /// The head of a linked list of all SCEVUnknown values that have been
1666     /// allocated. This is used by releaseMemory to locate them all and call
1667     /// their destructors.
1668     SCEVUnknown *FirstUnknown;
1669   };
1670 
1671   /// Analysis pass that exposes the \c ScalarEvolution for a function.
1672   class ScalarEvolutionAnalysis
1673       : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
1674     friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
1675     static char PassID;
1676 
1677   public:
1678     typedef ScalarEvolution Result;
1679 
1680     ScalarEvolution run(Function &F, AnalysisManager<Function> &AM);
1681   };
1682 
1683   /// Printer pass for the \c ScalarEvolutionAnalysis results.
1684   class ScalarEvolutionPrinterPass
1685       : public PassInfoMixin<ScalarEvolutionPrinterPass> {
1686     raw_ostream &OS;
1687 
1688   public:
1689     explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
1690     PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
1691   };
1692 
1693   class ScalarEvolutionWrapperPass : public FunctionPass {
1694     std::unique_ptr<ScalarEvolution> SE;
1695 
1696   public:
1697     static char ID;
1698 
1699     ScalarEvolutionWrapperPass();
1700 
1701     ScalarEvolution &getSE() { return *SE; }
1702     const ScalarEvolution &getSE() const { return *SE; }
1703 
1704     bool runOnFunction(Function &F) override;
1705     void releaseMemory() override;
1706     void getAnalysisUsage(AnalysisUsage &AU) const override;
1707     void print(raw_ostream &OS, const Module * = nullptr) const override;
1708     void verifyAnalysis() const override;
1709   };
1710 
1711   /// An interface layer with SCEV used to manage how we see SCEV expressions
1712   /// for values in the context of existing predicates. We can add new
1713   /// predicates, but we cannot remove them.
1714   ///
1715   /// This layer has multiple purposes:
1716   ///   - provides a simple interface for SCEV versioning.
1717   ///   - guarantees that the order of transformations applied on a SCEV
1718   ///     expression for a single Value is consistent across two different
1719   ///     getSCEV calls. This means that, for example, once we've obtained
1720   ///     an AddRec expression for a certain value through expression
1721   ///     rewriting, we will continue to get an AddRec expression for that
1722   ///     Value.
1723   ///   - lowers the number of expression rewrites.
1724   class PredicatedScalarEvolution {
1725   public:
1726     PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
1727     const SCEVUnionPredicate &getUnionPredicate() const;
1728 
1729     /// Returns the SCEV expression of V, in the context of the current SCEV
1730     /// predicate.  The order of transformations applied on the expression of V
1731     /// returned by ScalarEvolution is guaranteed to be preserved, even when
1732     /// adding new predicates.
1733     const SCEV *getSCEV(Value *V);
1734 
1735     /// Get the (predicated) backedge count for the analyzed loop.
1736     const SCEV *getBackedgeTakenCount();
1737 
1738     /// Adds a new predicate.
1739     void addPredicate(const SCEVPredicate &Pred);
1740 
1741     /// Attempts to produce an AddRecExpr for V by adding additional SCEV
1742     /// predicates. If we can't transform the expression into an AddRecExpr we
1743     /// return nullptr and not add additional SCEV predicates to the current
1744     /// context.
1745     const SCEVAddRecExpr *getAsAddRec(Value *V);
1746 
1747     /// Proves that V doesn't overflow by adding SCEV predicate.
1748     void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
1749 
1750     /// Returns true if we've proved that V doesn't wrap by means of a SCEV
1751     /// predicate.
1752     bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
1753 
1754     /// Returns the ScalarEvolution analysis used.
1755     ScalarEvolution *getSE() const { return &SE; }
1756 
1757     /// We need to explicitly define the copy constructor because of FlagsMap.
1758     PredicatedScalarEvolution(const PredicatedScalarEvolution&);
1759 
1760     /// Print the SCEV mappings done by the Predicated Scalar Evolution.
1761     /// The printed text is indented by \p Depth.
1762     void print(raw_ostream &OS, unsigned Depth) const;
1763 
1764   private:
1765     /// Increments the version number of the predicate.  This needs to be called
1766     /// every time the SCEV predicate changes.
1767     void updateGeneration();
1768 
1769     /// Holds a SCEV and the version number of the SCEV predicate used to
1770     /// perform the rewrite of the expression.
1771     typedef std::pair<unsigned, const SCEV *> RewriteEntry;
1772 
1773     /// Maps a SCEV to the rewrite result of that SCEV at a certain version
1774     /// number. If this number doesn't match the current Generation, we will
1775     /// need to do a rewrite. To preserve the transformation order of previous
1776     /// rewrites, we will rewrite the previous result instead of the original
1777     /// SCEV.
1778     DenseMap<const SCEV *, RewriteEntry> RewriteMap;
1779 
1780     /// Records what NoWrap flags we've added to a Value *.
1781     ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
1782 
1783     /// The ScalarEvolution analysis.
1784     ScalarEvolution &SE;
1785 
1786     /// The analyzed Loop.
1787     const Loop &L;
1788 
1789     /// The SCEVPredicate that forms our context. We will rewrite all
1790     /// expressions assuming that this predicate true.
1791     SCEVUnionPredicate Preds;
1792 
1793     /// Marks the version of the SCEV predicate used. When rewriting a SCEV
1794     /// expression we mark it with the version of the predicate. We use this to
1795     /// figure out if the predicate has changed from the last rewrite of the
1796     /// SCEV. If so, we need to perform a new rewrite.
1797     unsigned Generation;
1798 
1799     /// The backedge taken count.
1800     const SCEV *BackedgeCount;
1801   };
1802 }
1803 
1804 #endif
1805