1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
isNonEscapingLocalObject(const Value * V)72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
isEscapeSource(const Value * V)97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
getObjectSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,bool RoundToAlign=false)111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
isObjectSmallerThan(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI)122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
isObjectSize(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI)162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
GetLinearExpression(const Value * V,APInt & Scale,APInt & Offset,unsigned & ZExtBits,unsigned & SExtBits,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,DominatorTree * DT,bool & NSW,bool & NUW)182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230       // FALL THROUGH.
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
adjustToPointerSize(int64_t Offset,unsigned PointerSize)327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
DecomposeGEPExpression(const Value * V,DecomposedGEP & Decomposed,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)346 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
347        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
348        DominatorTree *DT) {
349   // Limit recursion depth to limit compile time in crazy cases.
350   unsigned MaxLookup = MaxLookupSearchDepth;
351   SearchTimes++;
352 
353   Decomposed.StructOffset = 0;
354   Decomposed.OtherOffset = 0;
355   Decomposed.VarIndices.clear();
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->isInterposable()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       Decomposed.Base = V;
368       return false;
369     }
370 
371     if (Op->getOpcode() == Instruction::BitCast ||
372         Op->getOpcode() == Instruction::AddrSpaceCast) {
373       V = Op->getOperand(0);
374       continue;
375     }
376 
377     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
378     if (!GEPOp) {
379       if (auto CS = ImmutableCallSite(V))
380         if (const Value *RV = CS.getReturnedArgOperand()) {
381           V = RV;
382           continue;
383         }
384 
385       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
386       // can come up with something. This matches what GetUnderlyingObject does.
387       if (const Instruction *I = dyn_cast<Instruction>(V))
388         // TODO: Get a DominatorTree and AssumptionCache and use them here
389         // (these are both now available in this function, but this should be
390         // updated when GetUnderlyingObject is updated). TLI should be
391         // provided also.
392         if (const Value *Simplified =
393                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
394           V = Simplified;
395           continue;
396         }
397 
398       Decomposed.Base = V;
399       return false;
400     }
401 
402     // Don't attempt to analyze GEPs over unsized objects.
403     if (!GEPOp->getSourceElementType()->isSized()) {
404       Decomposed.Base = V;
405       return false;
406     }
407 
408     unsigned AS = GEPOp->getPointerAddressSpace();
409     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
410     gep_type_iterator GTI = gep_type_begin(GEPOp);
411     unsigned PointerSize = DL.getPointerSizeInBits(AS);
412     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
413          I != E; ++I) {
414       const Value *Index = *I;
415       // Compute the (potentially symbolic) offset in bytes for this index.
416       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
417         // For a struct, add the member offset.
418         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
419         if (FieldNo == 0)
420           continue;
421 
422         Decomposed.StructOffset +=
423           DL.getStructLayout(STy)->getElementOffset(FieldNo);
424         continue;
425       }
426 
427       // For an array/pointer, add the element offset, explicitly scaled.
428       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
429         if (CIdx->isZero())
430           continue;
431         Decomposed.OtherOffset +=
432           DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
433         continue;
434       }
435 
436       uint64_t Scale = DL.getTypeAllocSize(*GTI);
437       unsigned ZExtBits = 0, SExtBits = 0;
438 
439       // If the integer type is smaller than the pointer size, it is implicitly
440       // sign extended to pointer size.
441       unsigned Width = Index->getType()->getIntegerBitWidth();
442       if (PointerSize > Width)
443         SExtBits += PointerSize - Width;
444 
445       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
446       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
447       bool NSW = true, NUW = true;
448       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
449                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
450 
451       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
452       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
453       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
454       Scale *= IndexScale.getSExtValue();
455 
456       // If we already had an occurrence of this index variable, merge this
457       // scale into it.  For example, we want to handle:
458       //   A[x][x] -> x*16 + x*4 -> x*20
459       // This also ensures that 'x' only appears in the index list once.
460       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
461         if (Decomposed.VarIndices[i].V == Index &&
462             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
463             Decomposed.VarIndices[i].SExtBits == SExtBits) {
464           Scale += Decomposed.VarIndices[i].Scale;
465           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
466           break;
467         }
468       }
469 
470       // Make sure that we have a scale that makes sense for this target's
471       // pointer size.
472       Scale = adjustToPointerSize(Scale, PointerSize);
473 
474       if (Scale) {
475         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
476                                   static_cast<int64_t>(Scale)};
477         Decomposed.VarIndices.push_back(Entry);
478       }
479     }
480 
481     // Take care of wrap-arounds
482     Decomposed.StructOffset =
483       adjustToPointerSize(Decomposed.StructOffset, PointerSize);
484     Decomposed.OtherOffset =
485       adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
486 
487     // Analyze the base pointer next.
488     V = GEPOp->getOperand(0);
489   } while (--MaxLookup);
490 
491   // If the chain of expressions is too deep, just return early.
492   Decomposed.Base = V;
493   SearchLimitReached++;
494   return true;
495 }
496 
497 /// Returns whether the given pointer value points to memory that is local to
498 /// the function, with global constants being considered local to all
499 /// functions.
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)500 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
501                                            bool OrLocal) {
502   assert(Visited.empty() && "Visited must be cleared after use!");
503 
504   unsigned MaxLookup = 8;
505   SmallVector<const Value *, 16> Worklist;
506   Worklist.push_back(Loc.Ptr);
507   do {
508     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
509     if (!Visited.insert(V).second) {
510       Visited.clear();
511       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
512     }
513 
514     // An alloca instruction defines local memory.
515     if (OrLocal && isa<AllocaInst>(V))
516       continue;
517 
518     // A global constant counts as local memory for our purposes.
519     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
520       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
521       // global to be marked constant in some modules and non-constant in
522       // others.  GV may even be a declaration, not a definition.
523       if (!GV->isConstant()) {
524         Visited.clear();
525         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
526       }
527       continue;
528     }
529 
530     // If both select values point to local memory, then so does the select.
531     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
532       Worklist.push_back(SI->getTrueValue());
533       Worklist.push_back(SI->getFalseValue());
534       continue;
535     }
536 
537     // If all values incoming to a phi node point to local memory, then so does
538     // the phi.
539     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
540       // Don't bother inspecting phi nodes with many operands.
541       if (PN->getNumIncomingValues() > MaxLookup) {
542         Visited.clear();
543         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
544       }
545       for (Value *IncValue : PN->incoming_values())
546         Worklist.push_back(IncValue);
547       continue;
548     }
549 
550     // Otherwise be conservative.
551     Visited.clear();
552     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
553 
554   } while (!Worklist.empty() && --MaxLookup);
555 
556   Visited.clear();
557   return Worklist.empty();
558 }
559 
560 /// Returns the behavior when calling the given call site.
getModRefBehavior(ImmutableCallSite CS)561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
562   if (CS.doesNotAccessMemory())
563     // Can't do better than this.
564     return FMRB_DoesNotAccessMemory;
565 
566   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
567 
568   // If the callsite knows it only reads memory, don't return worse
569   // than that.
570   if (CS.onlyReadsMemory())
571     Min = FMRB_OnlyReadsMemory;
572   else if (CS.doesNotReadMemory())
573     Min = FMRB_DoesNotReadMemory;
574 
575   if (CS.onlyAccessesArgMemory())
576     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
577 
578   // If CS has operand bundles then aliasing attributes from the function it
579   // calls do not directly apply to the CallSite.  This can be made more
580   // precise in the future.
581   if (!CS.hasOperandBundles())
582     if (const Function *F = CS.getCalledFunction())
583       Min =
584           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
585 
586   return Min;
587 }
588 
589 /// Returns the behavior when calling the given function. For use when the call
590 /// site is not known.
getModRefBehavior(const Function * F)591 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
592   // If the function declares it doesn't access memory, we can't do better.
593   if (F->doesNotAccessMemory())
594     return FMRB_DoesNotAccessMemory;
595 
596   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
597 
598   // If the function declares it only reads memory, go with that.
599   if (F->onlyReadsMemory())
600     Min = FMRB_OnlyReadsMemory;
601   else if (F->doesNotReadMemory())
602     Min = FMRB_DoesNotReadMemory;
603 
604   if (F->onlyAccessesArgMemory())
605     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
606 
607   return Min;
608 }
609 
610 /// Returns true if this is a writeonly (i.e Mod only) parameter.
isWriteOnlyParam(ImmutableCallSite CS,unsigned ArgIdx,const TargetLibraryInfo & TLI)611 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
612                              const TargetLibraryInfo &TLI) {
613   if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
614     return true;
615 
616   // We can bound the aliasing properties of memset_pattern16 just as we can
617   // for memcpy/memset.  This is particularly important because the
618   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
619   // whenever possible.
620   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
621   // attributes.
622   LibFunc::Func F;
623   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
624       F == LibFunc::memset_pattern16 && TLI.has(F))
625     if (ArgIdx == 0)
626       return true;
627 
628   // TODO: memset_pattern4, memset_pattern8
629   // TODO: _chk variants
630   // TODO: strcmp, strcpy
631 
632   return false;
633 }
634 
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)635 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
636                                            unsigned ArgIdx) {
637 
638   // Checking for known builtin intrinsics and target library functions.
639   if (isWriteOnlyParam(CS, ArgIdx, TLI))
640     return MRI_Mod;
641 
642   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
643     return MRI_Ref;
644 
645   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
646     return MRI_NoModRef;
647 
648   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
649 }
650 
isIntrinsicCall(ImmutableCallSite CS,Intrinsic::ID IID)651 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
652   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
653   return II && II->getIntrinsicID() == IID;
654 }
655 
656 #ifndef NDEBUG
getParent(const Value * V)657 static const Function *getParent(const Value *V) {
658   if (const Instruction *inst = dyn_cast<Instruction>(V))
659     return inst->getParent()->getParent();
660 
661   if (const Argument *arg = dyn_cast<Argument>(V))
662     return arg->getParent();
663 
664   return nullptr;
665 }
666 
notDifferentParent(const Value * O1,const Value * O2)667 static bool notDifferentParent(const Value *O1, const Value *O2) {
668 
669   const Function *F1 = getParent(O1);
670   const Function *F2 = getParent(O2);
671 
672   return !F1 || !F2 || F1 == F2;
673 }
674 #endif
675 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)676 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
677                                  const MemoryLocation &LocB) {
678   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
679          "BasicAliasAnalysis doesn't support interprocedural queries.");
680 
681   // If we have a directly cached entry for these locations, we have recursed
682   // through this once, so just return the cached results. Notably, when this
683   // happens, we don't clear the cache.
684   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
685   if (CacheIt != AliasCache.end())
686     return CacheIt->second;
687 
688   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
689                                  LocB.Size, LocB.AATags);
690   // AliasCache rarely has more than 1 or 2 elements, always use
691   // shrink_and_clear so it quickly returns to the inline capacity of the
692   // SmallDenseMap if it ever grows larger.
693   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
694   AliasCache.shrink_and_clear();
695   VisitedPhiBBs.clear();
696   return Alias;
697 }
698 
699 /// Checks to see if the specified callsite can clobber the specified memory
700 /// object.
701 ///
702 /// Since we only look at local properties of this function, we really can't
703 /// say much about this query.  We do, however, use simple "address taken"
704 /// analysis on local objects.
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)705 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
706                                         const MemoryLocation &Loc) {
707   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
708          "AliasAnalysis query involving multiple functions!");
709 
710   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
711 
712   // If this is a tail call and Loc.Ptr points to a stack location, we know that
713   // the tail call cannot access or modify the local stack.
714   // We cannot exclude byval arguments here; these belong to the caller of
715   // the current function not to the current function, and a tail callee
716   // may reference them.
717   if (isa<AllocaInst>(Object))
718     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
719       if (CI->isTailCall())
720         return MRI_NoModRef;
721 
722   // If the pointer is to a locally allocated object that does not escape,
723   // then the call can not mod/ref the pointer unless the call takes the pointer
724   // as an argument, and itself doesn't capture it.
725   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
726       isNonEscapingLocalObject(Object)) {
727     bool PassedAsArg = false;
728     unsigned OperandNo = 0;
729     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
730          CI != CE; ++CI, ++OperandNo) {
731       // Only look at the no-capture or byval pointer arguments.  If this
732       // pointer were passed to arguments that were neither of these, then it
733       // couldn't be no-capture.
734       if (!(*CI)->getType()->isPointerTy() ||
735           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
736         continue;
737 
738       // If this is a no-capture pointer argument, see if we can tell that it
739       // is impossible to alias the pointer we're checking.  If not, we have to
740       // assume that the call could touch the pointer, even though it doesn't
741       // escape.
742       AliasResult AR =
743           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
744       if (AR) {
745         PassedAsArg = true;
746         break;
747       }
748     }
749 
750     if (!PassedAsArg)
751       return MRI_NoModRef;
752   }
753 
754   // If the CallSite is to malloc or calloc, we can assume that it doesn't
755   // modify any IR visible value.  This is only valid because we assume these
756   // routines do not read values visible in the IR.  TODO: Consider special
757   // casing realloc and strdup routines which access only their arguments as
758   // well.  Or alternatively, replace all of this with inaccessiblememonly once
759   // that's implemented fully.
760   auto *Inst = CS.getInstruction();
761   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
762     // Be conservative if the accessed pointer may alias the allocation -
763     // fallback to the generic handling below.
764     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
765       return MRI_NoModRef;
766   }
767 
768   // While the assume intrinsic is marked as arbitrarily writing so that
769   // proper control dependencies will be maintained, it never aliases any
770   // particular memory location.
771   if (isIntrinsicCall(CS, Intrinsic::assume))
772     return MRI_NoModRef;
773 
774   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
775   // that proper control dependencies are maintained but they never mods any
776   // particular memory location.
777   //
778   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
779   // heap state at the point the guard is issued needs to be consistent in case
780   // the guard invokes the "deopt" continuation.
781   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
782     return MRI_Ref;
783 
784   // The AAResultBase base class has some smarts, lets use them.
785   return AAResultBase::getModRefInfo(CS, Loc);
786 }
787 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)788 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
789                                         ImmutableCallSite CS2) {
790   // While the assume intrinsic is marked as arbitrarily writing so that
791   // proper control dependencies will be maintained, it never aliases any
792   // particular memory location.
793   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
794       isIntrinsicCall(CS2, Intrinsic::assume))
795     return MRI_NoModRef;
796 
797   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
798   // that proper control dependencies are maintained but they never mod any
799   // particular memory location.
800   //
801   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
802   // heap state at the point the guard is issued needs to be consistent in case
803   // the guard invokes the "deopt" continuation.
804 
805   // NB! This function is *not* commutative, so we specical case two
806   // possibilities for guard intrinsics.
807 
808   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
809     return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;
810 
811   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
812     return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;
813 
814   // The AAResultBase base class has some smarts, lets use them.
815   return AAResultBase::getModRefInfo(CS1, CS2);
816 }
817 
818 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
819 /// both having the exact same pointer operand.
aliasSameBasePointerGEPs(const GEPOperator * GEP1,uint64_t V1Size,const GEPOperator * GEP2,uint64_t V2Size,const DataLayout & DL)820 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
821                                             uint64_t V1Size,
822                                             const GEPOperator *GEP2,
823                                             uint64_t V2Size,
824                                             const DataLayout &DL) {
825 
826   assert(GEP1->getPointerOperand()->stripPointerCasts() ==
827          GEP2->getPointerOperand()->stripPointerCasts() &&
828          GEP1->getPointerOperand()->getType() ==
829          GEP2->getPointerOperand()->getType() &&
830          "Expected GEPs with the same pointer operand");
831 
832   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
833   // such that the struct field accesses provably cannot alias.
834   // We also need at least two indices (the pointer, and the struct field).
835   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
836       GEP1->getNumIndices() < 2)
837     return MayAlias;
838 
839   // If we don't know the size of the accesses through both GEPs, we can't
840   // determine whether the struct fields accessed can't alias.
841   if (V1Size == MemoryLocation::UnknownSize ||
842       V2Size == MemoryLocation::UnknownSize)
843     return MayAlias;
844 
845   ConstantInt *C1 =
846       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
847   ConstantInt *C2 =
848       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
849 
850   // If the last (struct) indices are constants and are equal, the other indices
851   // might be also be dynamically equal, so the GEPs can alias.
852   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
853     return MayAlias;
854 
855   // Find the last-indexed type of the GEP, i.e., the type you'd get if
856   // you stripped the last index.
857   // On the way, look at each indexed type.  If there's something other
858   // than an array, different indices can lead to different final types.
859   SmallVector<Value *, 8> IntermediateIndices;
860 
861   // Insert the first index; we don't need to check the type indexed
862   // through it as it only drops the pointer indirection.
863   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
864   IntermediateIndices.push_back(GEP1->getOperand(1));
865 
866   // Insert all the remaining indices but the last one.
867   // Also, check that they all index through arrays.
868   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
869     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
870             GEP1->getSourceElementType(), IntermediateIndices)))
871       return MayAlias;
872     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
873   }
874 
875   auto *Ty = GetElementPtrInst::getIndexedType(
876     GEP1->getSourceElementType(), IntermediateIndices);
877   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
878 
879   if (isa<SequentialType>(Ty)) {
880     // We know that:
881     // - both GEPs begin indexing from the exact same pointer;
882     // - the last indices in both GEPs are constants, indexing into a sequential
883     //   type (array or pointer);
884     // - both GEPs only index through arrays prior to that.
885     //
886     // Because array indices greater than the number of elements are valid in
887     // GEPs, unless we know the intermediate indices are identical between
888     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
889     // partially overlap. We also need to check that the loaded size matches
890     // the element size, otherwise we could still have overlap.
891     const uint64_t ElementSize =
892         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
893     if (V1Size != ElementSize || V2Size != ElementSize)
894       return MayAlias;
895 
896     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
897       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
898         return MayAlias;
899 
900     // Now we know that the array/pointer that GEP1 indexes into and that
901     // that GEP2 indexes into must either precisely overlap or be disjoint.
902     // Because they cannot partially overlap and because fields in an array
903     // cannot overlap, if we can prove the final indices are different between
904     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
905 
906     // If the last indices are constants, we've already checked they don't
907     // equal each other so we can exit early.
908     if (C1 && C2)
909       return NoAlias;
910     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
911                         GEP2->getOperand(GEP2->getNumOperands() - 1),
912                         DL))
913       return NoAlias;
914     return MayAlias;
915   } else if (!LastIndexedStruct || !C1 || !C2) {
916     return MayAlias;
917   }
918 
919   // We know that:
920   // - both GEPs begin indexing from the exact same pointer;
921   // - the last indices in both GEPs are constants, indexing into a struct;
922   // - said indices are different, hence, the pointed-to fields are different;
923   // - both GEPs only index through arrays prior to that.
924   //
925   // This lets us determine that the struct that GEP1 indexes into and the
926   // struct that GEP2 indexes into must either precisely overlap or be
927   // completely disjoint.  Because they cannot partially overlap, indexing into
928   // different non-overlapping fields of the struct will never alias.
929 
930   // Therefore, the only remaining thing needed to show that both GEPs can't
931   // alias is that the fields are not overlapping.
932   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
933   const uint64_t StructSize = SL->getSizeInBytes();
934   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
935   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
936 
937   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
938                                       uint64_t V2Off, uint64_t V2Size) {
939     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
940            ((V2Off + V2Size <= StructSize) ||
941             (V2Off + V2Size - StructSize <= V1Off));
942   };
943 
944   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
945       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
946     return NoAlias;
947 
948   return MayAlias;
949 }
950 
951 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
952 // beginning of the object the GEP points would have a negative offset with
953 // repsect to the alloca, that means the GEP can not alias pointer (b).
954 // Note that the pointer based on the alloca may not be a GEP. For
955 // example, it may be the alloca itself.
956 // The same applies if (b) is based on a GlobalVariable. Note that just being
957 // based on isIdentifiedObject() is not enough - we need an identified object
958 // that does not permit access to negative offsets. For example, a negative
959 // offset from a noalias argument or call can be inbounds w.r.t the actual
960 // underlying object.
961 //
962 // For example, consider:
963 //
964 //   struct { int f0, int f1, ...} foo;
965 //   foo alloca;
966 //   foo* random = bar(alloca);
967 //   int *f0 = &alloca.f0
968 //   int *f1 = &random->f1;
969 //
970 // Which is lowered, approximately, to:
971 //
972 //  %alloca = alloca %struct.foo
973 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
974 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
975 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
976 //
977 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
978 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
979 // point into the same object. But since %f0 points to the beginning of %alloca,
980 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
981 // than (%alloca - 1), and so is not inbounds, a contradiction.
isGEPBaseAtNegativeOffset(const GEPOperator * GEPOp,const DecomposedGEP & DecompGEP,const DecomposedGEP & DecompObject,uint64_t ObjectAccessSize)982 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
983       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
984       uint64_t ObjectAccessSize) {
985   // If the object access size is unknown, or the GEP isn't inbounds, bail.
986   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
987     return false;
988 
989   // We need the object to be an alloca or a globalvariable, and want to know
990   // the offset of the pointer from the object precisely, so no variable
991   // indices are allowed.
992   if (!(isa<AllocaInst>(DecompObject.Base) ||
993         isa<GlobalVariable>(DecompObject.Base)) ||
994       !DecompObject.VarIndices.empty())
995     return false;
996 
997   int64_t ObjectBaseOffset = DecompObject.StructOffset +
998                              DecompObject.OtherOffset;
999 
1000   // If the GEP has no variable indices, we know the precise offset
1001   // from the base, then use it. If the GEP has variable indices, we're in
1002   // a bit more trouble: we can't count on the constant offsets that come
1003   // from non-struct sources, since these can be "rewound" by a negative
1004   // variable offset. So use only offsets that came from structs.
1005   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1006   if (DecompGEP.VarIndices.empty())
1007     GEPBaseOffset += DecompGEP.OtherOffset;
1008 
1009   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1010 }
1011 
1012 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1013 /// another pointer.
1014 ///
1015 /// We know that V1 is a GEP, but we don't know anything about V2.
1016 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1017 /// V2.
aliasGEP(const GEPOperator * GEP1,uint64_t V1Size,const AAMDNodes & V1AAInfo,const Value * V2,uint64_t V2Size,const AAMDNodes & V2AAInfo,const Value * UnderlyingV1,const Value * UnderlyingV2)1018 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1019                                     const AAMDNodes &V1AAInfo, const Value *V2,
1020                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1021                                     const Value *UnderlyingV1,
1022                                     const Value *UnderlyingV2) {
1023   DecomposedGEP DecompGEP1, DecompGEP2;
1024   bool GEP1MaxLookupReached =
1025     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1026   bool GEP2MaxLookupReached =
1027     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1028 
1029   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1030   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1031 
1032   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1033          "DecomposeGEPExpression returned a result different from "
1034          "GetUnderlyingObject");
1035 
1036   // If the GEP's offset relative to its base is such that the base would
1037   // fall below the start of the object underlying V2, then the GEP and V2
1038   // cannot alias.
1039   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1040       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1041     return NoAlias;
1042   // If we have two gep instructions with must-alias or not-alias'ing base
1043   // pointers, figure out if the indexes to the GEP tell us anything about the
1044   // derived pointer.
1045   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1046     // Check for the GEP base being at a negative offset, this time in the other
1047     // direction.
1048     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1049         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1050       return NoAlias;
1051     // Do the base pointers alias?
1052     AliasResult BaseAlias =
1053         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1054                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1055 
1056     // Check for geps of non-aliasing underlying pointers where the offsets are
1057     // identical.
1058     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1059       // Do the base pointers alias assuming type and size.
1060       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1061                                                 UnderlyingV2, V2Size, V2AAInfo);
1062       if (PreciseBaseAlias == NoAlias) {
1063         // See if the computed offset from the common pointer tells us about the
1064         // relation of the resulting pointer.
1065         // If the max search depth is reached the result is undefined
1066         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1067           return MayAlias;
1068 
1069         // Same offsets.
1070         if (GEP1BaseOffset == GEP2BaseOffset &&
1071             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1072           return NoAlias;
1073       }
1074     }
1075 
1076     // If we get a No or May, then return it immediately, no amount of analysis
1077     // will improve this situation.
1078     if (BaseAlias != MustAlias)
1079       return BaseAlias;
1080 
1081     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1082     // exactly, see if the computed offset from the common pointer tells us
1083     // about the relation of the resulting pointer.
1084     // If we know the two GEPs are based off of the exact same pointer (and not
1085     // just the same underlying object), see if that tells us anything about
1086     // the resulting pointers.
1087     if (GEP1->getPointerOperand()->stripPointerCasts() ==
1088         GEP2->getPointerOperand()->stripPointerCasts() &&
1089         GEP1->getPointerOperand()->getType() ==
1090         GEP2->getPointerOperand()->getType()) {
1091       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1092       // If we couldn't find anything interesting, don't abandon just yet.
1093       if (R != MayAlias)
1094         return R;
1095     }
1096 
1097     // If the max search depth is reached, the result is undefined
1098     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1099       return MayAlias;
1100 
1101     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1102     // symbolic difference.
1103     GEP1BaseOffset -= GEP2BaseOffset;
1104     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1105 
1106   } else {
1107     // Check to see if these two pointers are related by the getelementptr
1108     // instruction.  If one pointer is a GEP with a non-zero index of the other
1109     // pointer, we know they cannot alias.
1110 
1111     // If both accesses are unknown size, we can't do anything useful here.
1112     if (V1Size == MemoryLocation::UnknownSize &&
1113         V2Size == MemoryLocation::UnknownSize)
1114       return MayAlias;
1115 
1116     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1117                                AAMDNodes(), V2, V2Size, V2AAInfo);
1118     if (R != MustAlias)
1119       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1120       // If V2 is known not to alias GEP base pointer, then the two values
1121       // cannot alias per GEP semantics: "A pointer value formed from a
1122       // getelementptr instruction is associated with the addresses associated
1123       // with the first operand of the getelementptr".
1124       return R;
1125 
1126     // If the max search depth is reached the result is undefined
1127     if (GEP1MaxLookupReached)
1128       return MayAlias;
1129   }
1130 
1131   // In the two GEP Case, if there is no difference in the offsets of the
1132   // computed pointers, the resultant pointers are a must alias.  This
1133   // happens when we have two lexically identical GEP's (for example).
1134   //
1135   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1136   // must aliases the GEP, the end result is a must alias also.
1137   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1138     return MustAlias;
1139 
1140   // If there is a constant difference between the pointers, but the difference
1141   // is less than the size of the associated memory object, then we know
1142   // that the objects are partially overlapping.  If the difference is
1143   // greater, we know they do not overlap.
1144   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1145     if (GEP1BaseOffset >= 0) {
1146       if (V2Size != MemoryLocation::UnknownSize) {
1147         if ((uint64_t)GEP1BaseOffset < V2Size)
1148           return PartialAlias;
1149         return NoAlias;
1150       }
1151     } else {
1152       // We have the situation where:
1153       // +                +
1154       // | BaseOffset     |
1155       // ---------------->|
1156       // |-->V1Size       |-------> V2Size
1157       // GEP1             V2
1158       // We need to know that V2Size is not unknown, otherwise we might have
1159       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1160       if (V1Size != MemoryLocation::UnknownSize &&
1161           V2Size != MemoryLocation::UnknownSize) {
1162         if (-(uint64_t)GEP1BaseOffset < V1Size)
1163           return PartialAlias;
1164         return NoAlias;
1165       }
1166     }
1167   }
1168 
1169   if (!DecompGEP1.VarIndices.empty()) {
1170     uint64_t Modulo = 0;
1171     bool AllPositive = true;
1172     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1173 
1174       // Try to distinguish something like &A[i][1] against &A[42][0].
1175       // Grab the least significant bit set in any of the scales. We
1176       // don't need std::abs here (even if the scale's negative) as we'll
1177       // be ^'ing Modulo with itself later.
1178       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1179 
1180       if (AllPositive) {
1181         // If the Value could change between cycles, then any reasoning about
1182         // the Value this cycle may not hold in the next cycle. We'll just
1183         // give up if we can't determine conditions that hold for every cycle:
1184         const Value *V = DecompGEP1.VarIndices[i].V;
1185 
1186         bool SignKnownZero, SignKnownOne;
1187         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1188                        0, &AC, nullptr, DT);
1189 
1190         // Zero-extension widens the variable, and so forces the sign
1191         // bit to zero.
1192         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1193         SignKnownZero |= IsZExt;
1194         SignKnownOne &= !IsZExt;
1195 
1196         // If the variable begins with a zero then we know it's
1197         // positive, regardless of whether the value is signed or
1198         // unsigned.
1199         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1200         AllPositive =
1201             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1202       }
1203     }
1204 
1205     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1206 
1207     // We can compute the difference between the two addresses
1208     // mod Modulo. Check whether that difference guarantees that the
1209     // two locations do not alias.
1210     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1211     if (V1Size != MemoryLocation::UnknownSize &&
1212         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1213         V1Size <= Modulo - ModOffset)
1214       return NoAlias;
1215 
1216     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1217     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1218     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1219     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1220       return NoAlias;
1221 
1222     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1223                                 GEP1BaseOffset, &AC, DT))
1224       return NoAlias;
1225   }
1226 
1227   // Statically, we can see that the base objects are the same, but the
1228   // pointers have dynamic offsets which we can't resolve. And none of our
1229   // little tricks above worked.
1230   //
1231   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1232   // practical effect of this is protecting TBAA in the case of dynamic
1233   // indices into arrays of unions or malloc'd memory.
1234   return PartialAlias;
1235 }
1236 
MergeAliasResults(AliasResult A,AliasResult B)1237 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1238   // If the results agree, take it.
1239   if (A == B)
1240     return A;
1241   // A mix of PartialAlias and MustAlias is PartialAlias.
1242   if ((A == PartialAlias && B == MustAlias) ||
1243       (B == PartialAlias && A == MustAlias))
1244     return PartialAlias;
1245   // Otherwise, we don't know anything.
1246   return MayAlias;
1247 }
1248 
1249 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1250 /// against another.
aliasSelect(const SelectInst * SI,uint64_t SISize,const AAMDNodes & SIAAInfo,const Value * V2,uint64_t V2Size,const AAMDNodes & V2AAInfo)1251 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1252                                        const AAMDNodes &SIAAInfo,
1253                                        const Value *V2, uint64_t V2Size,
1254                                        const AAMDNodes &V2AAInfo) {
1255   // If the values are Selects with the same condition, we can do a more precise
1256   // check: just check for aliases between the values on corresponding arms.
1257   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1258     if (SI->getCondition() == SI2->getCondition()) {
1259       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1260                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1261       if (Alias == MayAlias)
1262         return MayAlias;
1263       AliasResult ThisAlias =
1264           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1265                      SI2->getFalseValue(), V2Size, V2AAInfo);
1266       return MergeAliasResults(ThisAlias, Alias);
1267     }
1268 
1269   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1270   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1271   AliasResult Alias =
1272       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1273   if (Alias == MayAlias)
1274     return MayAlias;
1275 
1276   AliasResult ThisAlias =
1277       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1278   return MergeAliasResults(ThisAlias, Alias);
1279 }
1280 
1281 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1282 /// another.
aliasPHI(const PHINode * PN,uint64_t PNSize,const AAMDNodes & PNAAInfo,const Value * V2,uint64_t V2Size,const AAMDNodes & V2AAInfo)1283 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1284                                     const AAMDNodes &PNAAInfo, const Value *V2,
1285                                     uint64_t V2Size,
1286                                     const AAMDNodes &V2AAInfo) {
1287   // Track phi nodes we have visited. We use this information when we determine
1288   // value equivalence.
1289   VisitedPhiBBs.insert(PN->getParent());
1290 
1291   // If the values are PHIs in the same block, we can do a more precise
1292   // as well as efficient check: just check for aliases between the values
1293   // on corresponding edges.
1294   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1295     if (PN2->getParent() == PN->getParent()) {
1296       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1297                    MemoryLocation(V2, V2Size, V2AAInfo));
1298       if (PN > V2)
1299         std::swap(Locs.first, Locs.second);
1300       // Analyse the PHIs' inputs under the assumption that the PHIs are
1301       // NoAlias.
1302       // If the PHIs are May/MustAlias there must be (recursively) an input
1303       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1304       // there must be an operation on the PHIs within the PHIs' value cycle
1305       // that causes a MayAlias.
1306       // Pretend the phis do not alias.
1307       AliasResult Alias = NoAlias;
1308       assert(AliasCache.count(Locs) &&
1309              "There must exist an entry for the phi node");
1310       AliasResult OrigAliasResult = AliasCache[Locs];
1311       AliasCache[Locs] = NoAlias;
1312 
1313       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1314         AliasResult ThisAlias =
1315             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1316                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1317                        V2Size, V2AAInfo);
1318         Alias = MergeAliasResults(ThisAlias, Alias);
1319         if (Alias == MayAlias)
1320           break;
1321       }
1322 
1323       // Reset if speculation failed.
1324       if (Alias != NoAlias)
1325         AliasCache[Locs] = OrigAliasResult;
1326 
1327       return Alias;
1328     }
1329 
1330   SmallPtrSet<Value *, 4> UniqueSrc;
1331   SmallVector<Value *, 4> V1Srcs;
1332   bool isRecursive = false;
1333   for (Value *PV1 : PN->incoming_values()) {
1334     if (isa<PHINode>(PV1))
1335       // If any of the source itself is a PHI, return MayAlias conservatively
1336       // to avoid compile time explosion. The worst possible case is if both
1337       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1338       // and 'n' are the number of PHI sources.
1339       return MayAlias;
1340 
1341     if (EnableRecPhiAnalysis)
1342       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1343         // Check whether the incoming value is a GEP that advances the pointer
1344         // result of this PHI node (e.g. in a loop). If this is the case, we
1345         // would recurse and always get a MayAlias. Handle this case specially
1346         // below.
1347         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1348             isa<ConstantInt>(PV1GEP->idx_begin())) {
1349           isRecursive = true;
1350           continue;
1351         }
1352       }
1353 
1354     if (UniqueSrc.insert(PV1).second)
1355       V1Srcs.push_back(PV1);
1356   }
1357 
1358   // If this PHI node is recursive, set the size of the accessed memory to
1359   // unknown to represent all the possible values the GEP could advance the
1360   // pointer to.
1361   if (isRecursive)
1362     PNSize = MemoryLocation::UnknownSize;
1363 
1364   AliasResult Alias =
1365       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1366 
1367   // Early exit if the check of the first PHI source against V2 is MayAlias.
1368   // Other results are not possible.
1369   if (Alias == MayAlias)
1370     return MayAlias;
1371 
1372   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1373   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1374   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1375     Value *V = V1Srcs[i];
1376 
1377     AliasResult ThisAlias =
1378         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1379     Alias = MergeAliasResults(ThisAlias, Alias);
1380     if (Alias == MayAlias)
1381       break;
1382   }
1383 
1384   return Alias;
1385 }
1386 
1387 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1388 /// array references.
aliasCheck(const Value * V1,uint64_t V1Size,AAMDNodes V1AAInfo,const Value * V2,uint64_t V2Size,AAMDNodes V2AAInfo)1389 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1390                                       AAMDNodes V1AAInfo, const Value *V2,
1391                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
1392   // If either of the memory references is empty, it doesn't matter what the
1393   // pointer values are.
1394   if (V1Size == 0 || V2Size == 0)
1395     return NoAlias;
1396 
1397   // Strip off any casts if they exist.
1398   V1 = V1->stripPointerCasts();
1399   V2 = V2->stripPointerCasts();
1400 
1401   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1402   // value for undef that aliases nothing in the program.
1403   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1404     return NoAlias;
1405 
1406   // Are we checking for alias of the same value?
1407   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1408   // different iterations. We must therefore make sure that this is not the
1409   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1410   // happen by looking at the visited phi nodes and making sure they cannot
1411   // reach the value.
1412   if (isValueEqualInPotentialCycles(V1, V2))
1413     return MustAlias;
1414 
1415   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1416     return NoAlias; // Scalars cannot alias each other
1417 
1418   // Figure out what objects these things are pointing to if we can.
1419   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1420   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1421 
1422   // Null values in the default address space don't point to any object, so they
1423   // don't alias any other pointer.
1424   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1425     if (CPN->getType()->getAddressSpace() == 0)
1426       return NoAlias;
1427   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1428     if (CPN->getType()->getAddressSpace() == 0)
1429       return NoAlias;
1430 
1431   if (O1 != O2) {
1432     // If V1/V2 point to two different objects, we know that we have no alias.
1433     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1434       return NoAlias;
1435 
1436     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1437     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1438         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1439       return NoAlias;
1440 
1441     // Function arguments can't alias with things that are known to be
1442     // unambigously identified at the function level.
1443     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1444         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1445       return NoAlias;
1446 
1447     // Most objects can't alias null.
1448     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1449         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1450       return NoAlias;
1451 
1452     // If one pointer is the result of a call/invoke or load and the other is a
1453     // non-escaping local object within the same function, then we know the
1454     // object couldn't escape to a point where the call could return it.
1455     //
1456     // Note that if the pointers are in different functions, there are a
1457     // variety of complications. A call with a nocapture argument may still
1458     // temporary store the nocapture argument's value in a temporary memory
1459     // location if that memory location doesn't escape. Or it may pass a
1460     // nocapture value to other functions as long as they don't capture it.
1461     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1462       return NoAlias;
1463     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1464       return NoAlias;
1465   }
1466 
1467   // If the size of one access is larger than the entire object on the other
1468   // side, then we know such behavior is undefined and can assume no alias.
1469   if ((V1Size != MemoryLocation::UnknownSize &&
1470        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1471       (V2Size != MemoryLocation::UnknownSize &&
1472        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1473     return NoAlias;
1474 
1475   // Check the cache before climbing up use-def chains. This also terminates
1476   // otherwise infinitely recursive queries.
1477   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1478                MemoryLocation(V2, V2Size, V2AAInfo));
1479   if (V1 > V2)
1480     std::swap(Locs.first, Locs.second);
1481   std::pair<AliasCacheTy::iterator, bool> Pair =
1482       AliasCache.insert(std::make_pair(Locs, MayAlias));
1483   if (!Pair.second)
1484     return Pair.first->second;
1485 
1486   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1487   // GEP can't simplify, we don't even look at the PHI cases.
1488   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1489     std::swap(V1, V2);
1490     std::swap(V1Size, V2Size);
1491     std::swap(O1, O2);
1492     std::swap(V1AAInfo, V2AAInfo);
1493   }
1494   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1495     AliasResult Result =
1496         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1497     if (Result != MayAlias)
1498       return AliasCache[Locs] = Result;
1499   }
1500 
1501   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1502     std::swap(V1, V2);
1503     std::swap(V1Size, V2Size);
1504     std::swap(V1AAInfo, V2AAInfo);
1505   }
1506   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1507     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1508     if (Result != MayAlias)
1509       return AliasCache[Locs] = Result;
1510   }
1511 
1512   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1513     std::swap(V1, V2);
1514     std::swap(V1Size, V2Size);
1515     std::swap(V1AAInfo, V2AAInfo);
1516   }
1517   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1518     AliasResult Result =
1519         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1520     if (Result != MayAlias)
1521       return AliasCache[Locs] = Result;
1522   }
1523 
1524   // If both pointers are pointing into the same object and one of them
1525   // accesses the entire object, then the accesses must overlap in some way.
1526   if (O1 == O2)
1527     if ((V1Size != MemoryLocation::UnknownSize &&
1528          isObjectSize(O1, V1Size, DL, TLI)) ||
1529         (V2Size != MemoryLocation::UnknownSize &&
1530          isObjectSize(O2, V2Size, DL, TLI)))
1531       return AliasCache[Locs] = PartialAlias;
1532 
1533   // Recurse back into the best AA results we have, potentially with refined
1534   // memory locations. We have already ensured that BasicAA has a MayAlias
1535   // cache result for these, so any recursion back into BasicAA won't loop.
1536   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1537   return AliasCache[Locs] = Result;
1538 }
1539 
1540 /// Check whether two Values can be considered equivalent.
1541 ///
1542 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1543 /// they can not be part of a cycle in the value graph by looking at all
1544 /// visited phi nodes an making sure that the phis cannot reach the value. We
1545 /// have to do this because we are looking through phi nodes (That is we say
1546 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
isValueEqualInPotentialCycles(const Value * V,const Value * V2)1547 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1548                                                   const Value *V2) {
1549   if (V != V2)
1550     return false;
1551 
1552   const Instruction *Inst = dyn_cast<Instruction>(V);
1553   if (!Inst)
1554     return true;
1555 
1556   if (VisitedPhiBBs.empty())
1557     return true;
1558 
1559   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1560     return false;
1561 
1562   // Make sure that the visited phis cannot reach the Value. This ensures that
1563   // the Values cannot come from different iterations of a potential cycle the
1564   // phi nodes could be involved in.
1565   for (auto *P : VisitedPhiBBs)
1566     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1567       return false;
1568 
1569   return true;
1570 }
1571 
1572 /// Computes the symbolic difference between two de-composed GEPs.
1573 ///
1574 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1575 /// instructions GEP1 and GEP2 which have common base pointers.
GetIndexDifference(SmallVectorImpl<VariableGEPIndex> & Dest,const SmallVectorImpl<VariableGEPIndex> & Src)1576 void BasicAAResult::GetIndexDifference(
1577     SmallVectorImpl<VariableGEPIndex> &Dest,
1578     const SmallVectorImpl<VariableGEPIndex> &Src) {
1579   if (Src.empty())
1580     return;
1581 
1582   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1583     const Value *V = Src[i].V;
1584     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1585     int64_t Scale = Src[i].Scale;
1586 
1587     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1588     // than a few variable indexes.
1589     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1590       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1591           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1592         continue;
1593 
1594       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1595       // goes to zero, remove the entry.
1596       if (Dest[j].Scale != Scale)
1597         Dest[j].Scale -= Scale;
1598       else
1599         Dest.erase(Dest.begin() + j);
1600       Scale = 0;
1601       break;
1602     }
1603 
1604     // If we didn't consume this entry, add it to the end of the Dest list.
1605     if (Scale) {
1606       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1607       Dest.push_back(Entry);
1608     }
1609   }
1610 }
1611 
constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> & VarIndices,uint64_t V1Size,uint64_t V2Size,int64_t BaseOffset,AssumptionCache * AC,DominatorTree * DT)1612 bool BasicAAResult::constantOffsetHeuristic(
1613     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1614     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1615     DominatorTree *DT) {
1616   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1617       V2Size == MemoryLocation::UnknownSize)
1618     return false;
1619 
1620   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1621 
1622   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1623       Var0.Scale != -Var1.Scale)
1624     return false;
1625 
1626   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1627 
1628   // We'll strip off the Extensions of Var0 and Var1 and do another round
1629   // of GetLinearExpression decomposition. In the example above, if Var0
1630   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1631 
1632   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1633       V1Offset(Width, 0);
1634   bool NSW = true, NUW = true;
1635   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1636   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1637                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1638   NSW = true;
1639   NUW = true;
1640   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1641                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1642 
1643   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1644       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1645     return false;
1646 
1647   // We have a hit - Var0 and Var1 only differ by a constant offset!
1648 
1649   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1650   // Var1 is possible to calculate, but we're just interested in the absolute
1651   // minimum difference between the two. The minimum distance may occur due to
1652   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1653   // the minimum distance between %i and %i + 5 is 3.
1654   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1655   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1656   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1657 
1658   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1659   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1660   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1661   // V2Size can fit in the MinDiffBytes gap.
1662   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1663          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1664 }
1665 
1666 //===----------------------------------------------------------------------===//
1667 // BasicAliasAnalysis Pass
1668 //===----------------------------------------------------------------------===//
1669 
1670 char BasicAA::PassID;
1671 
run(Function & F,AnalysisManager<Function> & AM)1672 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
1673   return BasicAAResult(F.getParent()->getDataLayout(),
1674                        AM.getResult<TargetLibraryAnalysis>(F),
1675                        AM.getResult<AssumptionAnalysis>(F),
1676                        &AM.getResult<DominatorTreeAnalysis>(F),
1677                        AM.getCachedResult<LoopAnalysis>(F));
1678 }
1679 
BasicAAWrapperPass()1680 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1681     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1682 }
1683 
1684 char BasicAAWrapperPass::ID = 0;
anchor()1685 void BasicAAWrapperPass::anchor() {}
1686 
1687 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1688                       "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1689 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1690 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1691 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1692 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1693                     "Basic Alias Analysis (stateless AA impl)", true, true)
1694 
1695 FunctionPass *llvm::createBasicAAWrapperPass() {
1696   return new BasicAAWrapperPass();
1697 }
1698 
runOnFunction(Function & F)1699 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1700   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1701   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1702   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1703   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1704 
1705   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1706                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1707                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1708 
1709   return false;
1710 }
1711 
getAnalysisUsage(AnalysisUsage & AU) const1712 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1713   AU.setPreservesAll();
1714   AU.addRequired<AssumptionCacheTracker>();
1715   AU.addRequired<DominatorTreeWrapperPass>();
1716   AU.addRequired<TargetLibraryInfoWrapperPass>();
1717 }
1718 
createLegacyPMBasicAAResult(Pass & P,Function & F)1719 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1720   return BasicAAResult(
1721       F.getParent()->getDataLayout(),
1722       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1723       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1724 }
1725