1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 //   !0 = metadata !{ metadata !"an example type tree" }
27 //   !1 = metadata !{ metadata !"int", metadata !0 }
28 //   !2 = metadata !{ metadata !"float", metadata !0 }
29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 //   short s;
67 // } A;
68 // typedef struct {
69 //   uint16_t s;
70 //   A a;
71 // } B;
72 //
73 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 //                                                           // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 //         Root (!0)
87 //         char (!1)  -- edge to Root
88 //         short (!2) -- edge to char
89 //         A (!3) -- edge with offset 0 to short
90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 //   struct X {
110 //     double d;
111 //     int i;
112 //   };
113 //   void foo(struct X *x, struct X *y, double *p) {
114 //     *x = *y;
115 //     *p = 0.0;
116 //   }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123 
124 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
125 #include "llvm/ADT/SetVector.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Module.h"
129 #include "llvm/Support/CommandLine.h"
130 using namespace llvm;
131 
132 // A handy option for disabling TBAA functionality. The same effect can also be
133 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
134 // more convenient.
135 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
136 
137 namespace {
138 /// TBAANode - This is a simple wrapper around an MDNode which provides a
139 /// higher-level interface by hiding the details of how alias analysis
140 /// information is encoded in its operands.
141 class TBAANode {
142   const MDNode *Node;
143 
144 public:
TBAANode()145   TBAANode() : Node(nullptr) {}
TBAANode(const MDNode * N)146   explicit TBAANode(const MDNode *N) : Node(N) {}
147 
148   /// getNode - Get the MDNode for this TBAANode.
getNode() const149   const MDNode *getNode() const { return Node; }
150 
151   /// getParent - Get this TBAANode's Alias tree parent.
getParent() const152   TBAANode getParent() const {
153     if (Node->getNumOperands() < 2)
154       return TBAANode();
155     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
156     if (!P)
157       return TBAANode();
158     // Ok, this node has a valid parent. Return it.
159     return TBAANode(P);
160   }
161 
162   /// TypeIsImmutable - Test if this TBAANode represents a type for objects
163   /// which are not modified (by any means) in the context where this
164   /// AliasAnalysis is relevant.
TypeIsImmutable() const165   bool TypeIsImmutable() const {
166     if (Node->getNumOperands() < 3)
167       return false;
168     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
169     if (!CI)
170       return false;
171     return CI->getValue()[0];
172   }
173 };
174 
175 /// This is a simple wrapper around an MDNode which provides a
176 /// higher-level interface by hiding the details of how alias analysis
177 /// information is encoded in its operands.
178 class TBAAStructTagNode {
179   /// This node should be created with createTBAAStructTagNode.
180   const MDNode *Node;
181 
182 public:
TBAAStructTagNode(const MDNode * N)183   explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
184 
185   /// Get the MDNode for this TBAAStructTagNode.
getNode() const186   const MDNode *getNode() const { return Node; }
187 
getBaseType() const188   const MDNode *getBaseType() const {
189     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
190   }
getAccessType() const191   const MDNode *getAccessType() const {
192     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
193   }
getOffset() const194   uint64_t getOffset() const {
195     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
196   }
197   /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
198   /// objects which are not modified (by any means) in the context where this
199   /// AliasAnalysis is relevant.
TypeIsImmutable() const200   bool TypeIsImmutable() const {
201     if (Node->getNumOperands() < 4)
202       return false;
203     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
204     if (!CI)
205       return false;
206     return CI->getValue()[0];
207   }
208 };
209 
210 /// This is a simple wrapper around an MDNode which provides a
211 /// higher-level interface by hiding the details of how alias analysis
212 /// information is encoded in its operands.
213 class TBAAStructTypeNode {
214   /// This node should be created with createTBAAStructTypeNode.
215   const MDNode *Node;
216 
217 public:
TBAAStructTypeNode()218   TBAAStructTypeNode() : Node(nullptr) {}
TBAAStructTypeNode(const MDNode * N)219   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
220 
221   /// Get the MDNode for this TBAAStructTypeNode.
getNode() const222   const MDNode *getNode() const { return Node; }
223 
224   /// Get this TBAAStructTypeNode's field in the type DAG with
225   /// given offset. Update the offset to be relative to the field type.
getParent(uint64_t & Offset) const226   TBAAStructTypeNode getParent(uint64_t &Offset) const {
227     // Parent can be omitted for the root node.
228     if (Node->getNumOperands() < 2)
229       return TBAAStructTypeNode();
230 
231     // Fast path for a scalar type node and a struct type node with a single
232     // field.
233     if (Node->getNumOperands() <= 3) {
234       uint64_t Cur = Node->getNumOperands() == 2
235                          ? 0
236                          : mdconst::extract<ConstantInt>(Node->getOperand(2))
237                                ->getZExtValue();
238       Offset -= Cur;
239       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
240       if (!P)
241         return TBAAStructTypeNode();
242       return TBAAStructTypeNode(P);
243     }
244 
245     // Assume the offsets are in order. We return the previous field if
246     // the current offset is bigger than the given offset.
247     unsigned TheIdx = 0;
248     for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
249       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
250                          ->getZExtValue();
251       if (Cur > Offset) {
252         assert(Idx >= 3 &&
253                "TBAAStructTypeNode::getParent should have an offset match!");
254         TheIdx = Idx - 2;
255         break;
256       }
257     }
258     // Move along the last field.
259     if (TheIdx == 0)
260       TheIdx = Node->getNumOperands() - 2;
261     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
262                        ->getZExtValue();
263     Offset -= Cur;
264     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
265     if (!P)
266       return TBAAStructTypeNode();
267     return TBAAStructTypeNode(P);
268   }
269 };
270 }
271 
272 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
273 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
274 /// format.
isStructPathTBAA(const MDNode * MD)275 static bool isStructPathTBAA(const MDNode *MD) {
276   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
277   // a TBAA tag.
278   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
279 }
280 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)281 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
282                                      const MemoryLocation &LocB) {
283   if (!EnableTBAA)
284     return AAResultBase::alias(LocA, LocB);
285 
286   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
287   // be conservative.
288   const MDNode *AM = LocA.AATags.TBAA;
289   if (!AM)
290     return AAResultBase::alias(LocA, LocB);
291   const MDNode *BM = LocB.AATags.TBAA;
292   if (!BM)
293     return AAResultBase::alias(LocA, LocB);
294 
295   // If they may alias, chain to the next AliasAnalysis.
296   if (Aliases(AM, BM))
297     return AAResultBase::alias(LocA, LocB);
298 
299   // Otherwise return a definitive result.
300   return NoAlias;
301 }
302 
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)303 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
304                                                bool OrLocal) {
305   if (!EnableTBAA)
306     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
307 
308   const MDNode *M = Loc.AATags.TBAA;
309   if (!M)
310     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
311 
312   // If this is an "immutable" type, we can assume the pointer is pointing
313   // to constant memory.
314   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
315       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
316     return true;
317 
318   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
319 }
320 
321 FunctionModRefBehavior
getModRefBehavior(ImmutableCallSite CS)322 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
323   if (!EnableTBAA)
324     return AAResultBase::getModRefBehavior(CS);
325 
326   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
327 
328   // If this is an "immutable" type, we can assume the call doesn't write
329   // to memory.
330   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
331     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
332         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
333       Min = FMRB_OnlyReadsMemory;
334 
335   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
336 }
337 
getModRefBehavior(const Function * F)338 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
339   // Functions don't have metadata. Just chain to the next implementation.
340   return AAResultBase::getModRefBehavior(F);
341 }
342 
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)343 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
344                                             const MemoryLocation &Loc) {
345   if (!EnableTBAA)
346     return AAResultBase::getModRefInfo(CS, Loc);
347 
348   if (const MDNode *L = Loc.AATags.TBAA)
349     if (const MDNode *M =
350             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
351       if (!Aliases(L, M))
352         return MRI_NoModRef;
353 
354   return AAResultBase::getModRefInfo(CS, Loc);
355 }
356 
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)357 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
358                                             ImmutableCallSite CS2) {
359   if (!EnableTBAA)
360     return AAResultBase::getModRefInfo(CS1, CS2);
361 
362   if (const MDNode *M1 =
363           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
364     if (const MDNode *M2 =
365             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
366       if (!Aliases(M1, M2))
367         return MRI_NoModRef;
368 
369   return AAResultBase::getModRefInfo(CS1, CS2);
370 }
371 
isTBAAVtableAccess() const372 bool MDNode::isTBAAVtableAccess() const {
373   if (!isStructPathTBAA(this)) {
374     if (getNumOperands() < 1)
375       return false;
376     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
377       if (Tag1->getString() == "vtable pointer")
378         return true;
379     }
380     return false;
381   }
382 
383   // For struct-path aware TBAA, we use the access type of the tag.
384   if (getNumOperands() < 2)
385     return false;
386   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
387   if (!Tag)
388     return false;
389   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
390     if (Tag1->getString() == "vtable pointer")
391       return true;
392   }
393   return false;
394 }
395 
getMostGenericTBAA(MDNode * A,MDNode * B)396 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
397   if (!A || !B)
398     return nullptr;
399 
400   if (A == B)
401     return A;
402 
403   // For struct-path aware TBAA, we use the access type of the tag.
404   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
405   if (StructPath) {
406     A = cast_or_null<MDNode>(A->getOperand(1));
407     if (!A)
408       return nullptr;
409     B = cast_or_null<MDNode>(B->getOperand(1));
410     if (!B)
411       return nullptr;
412   }
413 
414   SmallSetVector<MDNode *, 4> PathA;
415   MDNode *T = A;
416   while (T) {
417     if (PathA.count(T))
418       report_fatal_error("Cycle found in TBAA metadata.");
419     PathA.insert(T);
420     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
421                                  : nullptr;
422   }
423 
424   SmallSetVector<MDNode *, 4> PathB;
425   T = B;
426   while (T) {
427     if (PathB.count(T))
428       report_fatal_error("Cycle found in TBAA metadata.");
429     PathB.insert(T);
430     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
431                                  : nullptr;
432   }
433 
434   int IA = PathA.size() - 1;
435   int IB = PathB.size() - 1;
436 
437   MDNode *Ret = nullptr;
438   while (IA >= 0 && IB >= 0) {
439     if (PathA[IA] == PathB[IB])
440       Ret = PathA[IA];
441     else
442       break;
443     --IA;
444     --IB;
445   }
446   if (!StructPath)
447     return Ret;
448 
449   if (!Ret)
450     return nullptr;
451   // We need to convert from a type node to a tag node.
452   Type *Int64 = IntegerType::get(A->getContext(), 64);
453   Metadata *Ops[3] = {Ret, Ret,
454                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
455   return MDNode::get(A->getContext(), Ops);
456 }
457 
getAAMetadata(AAMDNodes & N,bool Merge) const458 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
459   if (Merge)
460     N.TBAA =
461         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
462   else
463     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
464 
465   if (Merge)
466     N.Scope = MDNode::getMostGenericAliasScope(
467         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
468   else
469     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
470 
471   if (Merge)
472     N.NoAlias =
473         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
474   else
475     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
476 }
477 
478 /// Aliases - Test whether the type represented by A may alias the
479 /// type represented by B.
Aliases(const MDNode * A,const MDNode * B) const480 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
481   // Make sure that both MDNodes are struct-path aware.
482   if (isStructPathTBAA(A) && isStructPathTBAA(B))
483     return PathAliases(A, B);
484 
485   // Keep track of the root node for A and B.
486   TBAANode RootA, RootB;
487 
488   // Climb the tree from A to see if we reach B.
489   for (TBAANode T(A);;) {
490     if (T.getNode() == B)
491       // B is an ancestor of A.
492       return true;
493 
494     RootA = T;
495     T = T.getParent();
496     if (!T.getNode())
497       break;
498   }
499 
500   // Climb the tree from B to see if we reach A.
501   for (TBAANode T(B);;) {
502     if (T.getNode() == A)
503       // A is an ancestor of B.
504       return true;
505 
506     RootB = T;
507     T = T.getParent();
508     if (!T.getNode())
509       break;
510   }
511 
512   // Neither node is an ancestor of the other.
513 
514   // If they have different roots, they're part of different potentially
515   // unrelated type systems, so we must be conservative.
516   if (RootA.getNode() != RootB.getNode())
517     return true;
518 
519   // If they have the same root, then we've proved there's no alias.
520   return false;
521 }
522 
523 /// Test whether the struct-path tag represented by A may alias the
524 /// struct-path tag represented by B.
PathAliases(const MDNode * A,const MDNode * B) const525 bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
526   // Verify that both input nodes are struct-path aware.
527   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
528   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
529 
530   // Keep track of the root node for A and B.
531   TBAAStructTypeNode RootA, RootB;
532   TBAAStructTagNode TagA(A), TagB(B);
533 
534   // TODO: We need to check if AccessType of TagA encloses AccessType of
535   // TagB to support aggregate AccessType. If yes, return true.
536 
537   // Start from the base type of A, follow the edge with the correct offset in
538   // the type DAG and adjust the offset until we reach the base type of B or
539   // until we reach the Root node.
540   // Compare the adjusted offset once we have the same base.
541 
542   // Climb the type DAG from base type of A to see if we reach base type of B.
543   const MDNode *BaseA = TagA.getBaseType();
544   const MDNode *BaseB = TagB.getBaseType();
545   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
546   for (TBAAStructTypeNode T(BaseA);;) {
547     if (T.getNode() == BaseB)
548       // Base type of A encloses base type of B, check if the offsets match.
549       return OffsetA == OffsetB;
550 
551     RootA = T;
552     // Follow the edge with the correct offset, OffsetA will be adjusted to
553     // be relative to the field type.
554     T = T.getParent(OffsetA);
555     if (!T.getNode())
556       break;
557   }
558 
559   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
560   // base type of A.
561   OffsetA = TagA.getOffset();
562   for (TBAAStructTypeNode T(BaseB);;) {
563     if (T.getNode() == BaseA)
564       // Base type of B encloses base type of A, check if the offsets match.
565       return OffsetA == OffsetB;
566 
567     RootB = T;
568     // Follow the edge with the correct offset, OffsetB will be adjusted to
569     // be relative to the field type.
570     T = T.getParent(OffsetB);
571     if (!T.getNode())
572       break;
573   }
574 
575   // Neither node is an ancestor of the other.
576 
577   // If they have different roots, they're part of different potentially
578   // unrelated type systems, so we must be conservative.
579   if (RootA.getNode() != RootB.getNode())
580     return true;
581 
582   // If they have the same root, then we've proved there's no alias.
583   return false;
584 }
585 
586 char TypeBasedAA::PassID;
587 
run(Function & F,AnalysisManager<Function> & AM)588 TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> &AM) {
589   return TypeBasedAAResult();
590 }
591 
592 char TypeBasedAAWrapperPass::ID = 0;
593 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
594                 false, true)
595 
createTypeBasedAAWrapperPass()596 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
597   return new TypeBasedAAWrapperPass();
598 }
599 
TypeBasedAAWrapperPass()600 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
601   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
602 }
603 
doInitialization(Module & M)604 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
605   Result.reset(new TypeBasedAAResult());
606   return false;
607 }
608 
doFinalization(Module & M)609 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
610   Result.reset();
611   return false;
612 }
613 
getAnalysisUsage(AnalysisUsage & AU) const614 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
615   AU.setPreservesAll();
616 }
617