1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 //   architectures. In Proceedings of the Joint Conference on Languages,
27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 //   NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/CodeGen/RegAllocPBQP.h"
33 #include "RegisterCoalescer.h"
34 #include "Spiller.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/CalcSpillWeights.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveStackAnalysis.h"
40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41 #include "llvm/CodeGen/MachineDominators.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Printable.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 #include <limits>
55 #include <memory>
56 #include <queue>
57 #include <set>
58 #include <sstream>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 static RegisterRegAlloc
66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
67                        createDefaultPBQPRegisterAllocator);
68 
69 static cl::opt<bool>
70 PBQPCoalescing("pbqp-coalescing",
71                 cl::desc("Attempt coalescing during PBQP register allocation."),
72                 cl::init(false), cl::Hidden);
73 
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 PBQPDumpGraphs("pbqp-dump-graphs",
77                cl::desc("Dump graphs for each function/round in the compilation unit."),
78                cl::init(false), cl::Hidden);
79 #endif
80 
81 namespace {
82 
83 ///
84 /// PBQP based allocators solve the register allocation problem by mapping
85 /// register allocation problems to Partitioned Boolean Quadratic
86 /// Programming problems.
87 class RegAllocPBQP : public MachineFunctionPass {
88 public:
89 
90   static char ID;
91 
92   /// Construct a PBQP register allocator.
RegAllocPBQP(char * cPassID=nullptr)93   RegAllocPBQP(char *cPassID = nullptr)
94       : MachineFunctionPass(ID), customPassID(cPassID) {
95     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
96     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
98     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
99   }
100 
101   /// Return the pass name.
getPassName() const102   const char* getPassName() const override {
103     return "PBQP Register Allocator";
104   }
105 
106   /// PBQP analysis usage.
107   void getAnalysisUsage(AnalysisUsage &au) const override;
108 
109   /// Perform register allocation
110   bool runOnMachineFunction(MachineFunction &MF) override;
111 
112 private:
113 
114   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
115   typedef std::vector<const LiveInterval*> Node2LIMap;
116   typedef std::vector<unsigned> AllowedSet;
117   typedef std::vector<AllowedSet> AllowedSetMap;
118   typedef std::pair<unsigned, unsigned> RegPair;
119   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
120   typedef std::set<unsigned> RegSet;
121 
122   char *customPassID;
123 
124   RegSet VRegsToAlloc, EmptyIntervalVRegs;
125 
126   /// Inst which is a def of an original reg and whose defs are already all
127   /// dead after remat is saved in DeadRemats. The deletion of such inst is
128   /// postponed till all the allocations are done, so its remat expr is
129   /// always available for the remat of all the siblings of the original reg.
130   SmallPtrSet<MachineInstr *, 32> DeadRemats;
131 
132   /// \brief Finds the initial set of vreg intervals to allocate.
133   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
134 
135   /// \brief Constructs an initial graph.
136   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
137 
138   /// \brief Spill the given VReg.
139   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
140                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
141                  Spiller &VRegSpiller);
142 
143   /// \brief Given a solved PBQP problem maps this solution back to a register
144   /// assignment.
145   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
146                          const PBQP::Solution &Solution,
147                          VirtRegMap &VRM,
148                          Spiller &VRegSpiller);
149 
150   /// \brief Postprocessing before final spilling. Sets basic block "live in"
151   /// variables.
152   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
153                      VirtRegMap &VRM) const;
154 
155   void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
156 };
157 
158 char RegAllocPBQP::ID = 0;
159 
160 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
161 class SpillCosts : public PBQPRAConstraint {
162 public:
apply(PBQPRAGraph & G)163   void apply(PBQPRAGraph &G) override {
164     LiveIntervals &LIS = G.getMetadata().LIS;
165 
166     // A minimum spill costs, so that register constraints can can be set
167     // without normalization in the [0.0:MinSpillCost( interval.
168     const PBQP::PBQPNum MinSpillCost = 10.0;
169 
170     for (auto NId : G.nodeIds()) {
171       PBQP::PBQPNum SpillCost =
172         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
173       if (SpillCost == 0.0)
174         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
175       else
176         SpillCost += MinSpillCost;
177       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
178       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
179       G.setNodeCosts(NId, std::move(NodeCosts));
180     }
181   }
182 };
183 
184 /// @brief Add interference edges between overlapping vregs.
185 class Interference : public PBQPRAConstraint {
186 private:
187 
188   typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
189   typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
190   typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
191   typedef DenseSet<IKey> DisjointAllowedRegsCache;
192   typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
193   typedef DenseSet<IEdgeKey> IEdgeCache;
194 
haveDisjointAllowedRegs(const PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,const DisjointAllowedRegsCache & D) const195   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
196                                PBQPRAGraph::NodeId MId,
197                                const DisjointAllowedRegsCache &D) const {
198     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
199     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
200 
201     if (NRegs == MRegs)
202       return false;
203 
204     if (NRegs < MRegs)
205       return D.count(IKey(NRegs, MRegs)) > 0;
206 
207     return D.count(IKey(MRegs, NRegs)) > 0;
208   }
209 
setDisjointAllowedRegs(const PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,DisjointAllowedRegsCache & D)210   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
211                               PBQPRAGraph::NodeId MId,
212                               DisjointAllowedRegsCache &D) {
213     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
214     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
215 
216     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
217 
218     if (NRegs < MRegs)
219       D.insert(IKey(NRegs, MRegs));
220     else
221       D.insert(IKey(MRegs, NRegs));
222   }
223 
224   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
225   // for the fast interference graph construction algorithm. The last is there
226   // to save us from looking up node ids via the VRegToNode map in the graph
227   // metadata.
228   typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
229     IntervalInfo;
230 
getStartPoint(const IntervalInfo & I)231   static SlotIndex getStartPoint(const IntervalInfo &I) {
232     return std::get<0>(I)->segments[std::get<1>(I)].start;
233   }
234 
getEndPoint(const IntervalInfo & I)235   static SlotIndex getEndPoint(const IntervalInfo &I) {
236     return std::get<0>(I)->segments[std::get<1>(I)].end;
237   }
238 
getNodeId(const IntervalInfo & I)239   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
240     return std::get<2>(I);
241   }
242 
lowestStartPoint(const IntervalInfo & I1,const IntervalInfo & I2)243   static bool lowestStartPoint(const IntervalInfo &I1,
244                                const IntervalInfo &I2) {
245     // Condition reversed because priority queue has the *highest* element at
246     // the front, rather than the lowest.
247     return getStartPoint(I1) > getStartPoint(I2);
248   }
249 
lowestEndPoint(const IntervalInfo & I1,const IntervalInfo & I2)250   static bool lowestEndPoint(const IntervalInfo &I1,
251                              const IntervalInfo &I2) {
252     SlotIndex E1 = getEndPoint(I1);
253     SlotIndex E2 = getEndPoint(I2);
254 
255     if (E1 < E2)
256       return true;
257 
258     if (E1 > E2)
259       return false;
260 
261     // If two intervals end at the same point, we need a way to break the tie or
262     // the set will assume they're actually equal and refuse to insert a
263     // "duplicate". Just compare the vregs - fast and guaranteed unique.
264     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
265   }
266 
isAtLastSegment(const IntervalInfo & I)267   static bool isAtLastSegment(const IntervalInfo &I) {
268     return std::get<1>(I) == std::get<0>(I)->size() - 1;
269   }
270 
nextSegment(const IntervalInfo & I)271   static IntervalInfo nextSegment(const IntervalInfo &I) {
272     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
273   }
274 
275 public:
276 
apply(PBQPRAGraph & G)277   void apply(PBQPRAGraph &G) override {
278     // The following is loosely based on the linear scan algorithm introduced in
279     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
280     // isn't linear, because the size of the active set isn't bound by the
281     // number of registers, but rather the size of the largest clique in the
282     // graph. Still, we expect this to be better than N^2.
283     LiveIntervals &LIS = G.getMetadata().LIS;
284 
285     // Interferenc matrices are incredibly regular - they're only a function of
286     // the allowed sets, so we cache them to avoid the overhead of constructing
287     // and uniquing them.
288     IMatrixCache C;
289 
290     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
291     // cache locally edges we have already seen.
292     IEdgeCache EC;
293 
294     // Cache known disjoint allowed registers pairs
295     DisjointAllowedRegsCache D;
296 
297     typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
298     typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
299                                 decltype(&lowestStartPoint)> IntervalQueue;
300     IntervalSet Active(lowestEndPoint);
301     IntervalQueue Inactive(lowestStartPoint);
302 
303     // Start by building the inactive set.
304     for (auto NId : G.nodeIds()) {
305       unsigned VReg = G.getNodeMetadata(NId).getVReg();
306       LiveInterval &LI = LIS.getInterval(VReg);
307       assert(!LI.empty() && "PBQP graph contains node for empty interval");
308       Inactive.push(std::make_tuple(&LI, 0, NId));
309     }
310 
311     while (!Inactive.empty()) {
312       // Tentatively grab the "next" interval - this choice may be overriden
313       // below.
314       IntervalInfo Cur = Inactive.top();
315 
316       // Retire any active intervals that end before Cur starts.
317       IntervalSet::iterator RetireItr = Active.begin();
318       while (RetireItr != Active.end() &&
319              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
320         // If this interval has subsequent segments, add the next one to the
321         // inactive list.
322         if (!isAtLastSegment(*RetireItr))
323           Inactive.push(nextSegment(*RetireItr));
324 
325         ++RetireItr;
326       }
327       Active.erase(Active.begin(), RetireItr);
328 
329       // One of the newly retired segments may actually start before the
330       // Cur segment, so re-grab the front of the inactive list.
331       Cur = Inactive.top();
332       Inactive.pop();
333 
334       // At this point we know that Cur overlaps all active intervals. Add the
335       // interference edges.
336       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
337       for (const auto &A : Active) {
338         PBQP::GraphBase::NodeId MId = getNodeId(A);
339 
340         // Do not add an edge when the nodes' allowed registers do not
341         // intersect: there is obviously no interference.
342         if (haveDisjointAllowedRegs(G, NId, MId, D))
343           continue;
344 
345         // Check that we haven't already added this edge
346         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
347         if (EC.count(EK))
348           continue;
349 
350         // This is a new edge - add it to the graph.
351         if (!createInterferenceEdge(G, NId, MId, C))
352           setDisjointAllowedRegs(G, NId, MId, D);
353         else
354           EC.insert(EK);
355       }
356 
357       // Finally, add Cur to the Active set.
358       Active.insert(Cur);
359     }
360   }
361 
362 private:
363 
364   // Create an Interference edge and add it to the graph, unless it is
365   // a null matrix, meaning the nodes' allowed registers do not have any
366   // interference. This case occurs frequently between integer and floating
367   // point registers for example.
368   // return true iff both nodes interferes.
createInterferenceEdge(PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,IMatrixCache & C)369   bool createInterferenceEdge(PBQPRAGraph &G,
370                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
371                               IMatrixCache &C) {
372 
373     const TargetRegisterInfo &TRI =
374         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
375     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
376     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
377 
378     // Try looking the edge costs up in the IMatrixCache first.
379     IKey K(&NRegs, &MRegs);
380     IMatrixCache::iterator I = C.find(K);
381     if (I != C.end()) {
382       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
383       return true;
384     }
385 
386     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
387     bool NodesInterfere = false;
388     for (unsigned I = 0; I != NRegs.size(); ++I) {
389       unsigned PRegN = NRegs[I];
390       for (unsigned J = 0; J != MRegs.size(); ++J) {
391         unsigned PRegM = MRegs[J];
392         if (TRI.regsOverlap(PRegN, PRegM)) {
393           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
394           NodesInterfere = true;
395         }
396       }
397     }
398 
399     if (!NodesInterfere)
400       return false;
401 
402     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
403     C[K] = G.getEdgeCostsPtr(EId);
404 
405     return true;
406   }
407 };
408 
409 
410 class Coalescing : public PBQPRAConstraint {
411 public:
apply(PBQPRAGraph & G)412   void apply(PBQPRAGraph &G) override {
413     MachineFunction &MF = G.getMetadata().MF;
414     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
415     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
416 
417     // Scan the machine function and add a coalescing cost whenever CoalescerPair
418     // gives the Ok.
419     for (const auto &MBB : MF) {
420       for (const auto &MI : MBB) {
421 
422         // Skip not-coalescable or already coalesced copies.
423         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
424           continue;
425 
426         unsigned DstReg = CP.getDstReg();
427         unsigned SrcReg = CP.getSrcReg();
428 
429         const float Scale = 1.0f / MBFI.getEntryFreq();
430         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
431 
432         if (CP.isPhys()) {
433           if (!MF.getRegInfo().isAllocatable(DstReg))
434             continue;
435 
436           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
437 
438           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
439             G.getNodeMetadata(NId).getAllowedRegs();
440 
441           unsigned PRegOpt = 0;
442           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
443             ++PRegOpt;
444 
445           if (PRegOpt < Allowed.size()) {
446             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
447             NewCosts[PRegOpt + 1] -= CBenefit;
448             G.setNodeCosts(NId, std::move(NewCosts));
449           }
450         } else {
451           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
452           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
453           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
454             &G.getNodeMetadata(N1Id).getAllowedRegs();
455           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
456             &G.getNodeMetadata(N2Id).getAllowedRegs();
457 
458           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
459           if (EId == G.invalidEdgeId()) {
460             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
461                                          Allowed2->size() + 1, 0);
462             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
463             G.addEdge(N1Id, N2Id, std::move(Costs));
464           } else {
465             if (G.getEdgeNode1Id(EId) == N2Id) {
466               std::swap(N1Id, N2Id);
467               std::swap(Allowed1, Allowed2);
468             }
469             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
470             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
471             G.updateEdgeCosts(EId, std::move(Costs));
472           }
473         }
474       }
475     }
476   }
477 
478 private:
479 
addVirtRegCoalesce(PBQPRAGraph::RawMatrix & CostMat,const PBQPRAGraph::NodeMetadata::AllowedRegVector & Allowed1,const PBQPRAGraph::NodeMetadata::AllowedRegVector & Allowed2,PBQP::PBQPNum Benefit)480   void addVirtRegCoalesce(
481                     PBQPRAGraph::RawMatrix &CostMat,
482                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
483                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
484                     PBQP::PBQPNum Benefit) {
485     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
486     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
487     for (unsigned I = 0; I != Allowed1.size(); ++I) {
488       unsigned PReg1 = Allowed1[I];
489       for (unsigned J = 0; J != Allowed2.size(); ++J) {
490         unsigned PReg2 = Allowed2[J];
491         if (PReg1 == PReg2)
492           CostMat[I + 1][J + 1] -= Benefit;
493       }
494     }
495   }
496 
497 };
498 
499 } // End anonymous namespace.
500 
501 // Out-of-line destructor/anchor for PBQPRAConstraint.
~PBQPRAConstraint()502 PBQPRAConstraint::~PBQPRAConstraint() {}
anchor()503 void PBQPRAConstraint::anchor() {}
anchor()504 void PBQPRAConstraintList::anchor() {}
505 
getAnalysisUsage(AnalysisUsage & au) const506 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
507   au.setPreservesCFG();
508   au.addRequired<AAResultsWrapperPass>();
509   au.addPreserved<AAResultsWrapperPass>();
510   au.addRequired<SlotIndexes>();
511   au.addPreserved<SlotIndexes>();
512   au.addRequired<LiveIntervals>();
513   au.addPreserved<LiveIntervals>();
514   //au.addRequiredID(SplitCriticalEdgesID);
515   if (customPassID)
516     au.addRequiredID(*customPassID);
517   au.addRequired<LiveStacks>();
518   au.addPreserved<LiveStacks>();
519   au.addRequired<MachineBlockFrequencyInfo>();
520   au.addPreserved<MachineBlockFrequencyInfo>();
521   au.addRequired<MachineLoopInfo>();
522   au.addPreserved<MachineLoopInfo>();
523   au.addRequired<MachineDominatorTree>();
524   au.addPreserved<MachineDominatorTree>();
525   au.addRequired<VirtRegMap>();
526   au.addPreserved<VirtRegMap>();
527   MachineFunctionPass::getAnalysisUsage(au);
528 }
529 
findVRegIntervalsToAlloc(const MachineFunction & MF,LiveIntervals & LIS)530 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
531                                             LiveIntervals &LIS) {
532   const MachineRegisterInfo &MRI = MF.getRegInfo();
533 
534   // Iterate over all live ranges.
535   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
536     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
537     if (MRI.reg_nodbg_empty(Reg))
538       continue;
539     LiveInterval &LI = LIS.getInterval(Reg);
540 
541     // If this live interval is non-empty we will use pbqp to allocate it.
542     // Empty intervals we allocate in a simple post-processing stage in
543     // finalizeAlloc.
544     if (!LI.empty()) {
545       VRegsToAlloc.insert(LI.reg);
546     } else {
547       EmptyIntervalVRegs.insert(LI.reg);
548     }
549   }
550 }
551 
isACalleeSavedRegister(unsigned reg,const TargetRegisterInfo & TRI,const MachineFunction & MF)552 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
553                                    const MachineFunction &MF) {
554   const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
555   for (unsigned i = 0; CSR[i] != 0; ++i)
556     if (TRI.regsOverlap(reg, CSR[i]))
557       return true;
558   return false;
559 }
560 
initializeGraph(PBQPRAGraph & G,VirtRegMap & VRM,Spiller & VRegSpiller)561 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
562                                    Spiller &VRegSpiller) {
563   MachineFunction &MF = G.getMetadata().MF;
564 
565   LiveIntervals &LIS = G.getMetadata().LIS;
566   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
567   const TargetRegisterInfo &TRI =
568       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
569 
570   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
571 
572   while (!Worklist.empty()) {
573     unsigned VReg = Worklist.back();
574     Worklist.pop_back();
575 
576     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
577     LiveInterval &VRegLI = LIS.getInterval(VReg);
578 
579     // Record any overlaps with regmask operands.
580     BitVector RegMaskOverlaps;
581     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
582 
583     // Compute an initial allowed set for the current vreg.
584     std::vector<unsigned> VRegAllowed;
585     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
586     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
587       unsigned PReg = RawPRegOrder[I];
588       if (MRI.isReserved(PReg))
589         continue;
590 
591       // vregLI crosses a regmask operand that clobbers preg.
592       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
593         continue;
594 
595       // vregLI overlaps fixed regunit interference.
596       bool Interference = false;
597       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
598         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
599           Interference = true;
600           break;
601         }
602       }
603       if (Interference)
604         continue;
605 
606       // preg is usable for this virtual register.
607       VRegAllowed.push_back(PReg);
608     }
609 
610     // Check for vregs that have no allowed registers. These should be
611     // pre-spilled and the new vregs added to the worklist.
612     if (VRegAllowed.empty()) {
613       SmallVector<unsigned, 8> NewVRegs;
614       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
615       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
616       continue;
617     }
618 
619     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
620 
621     // Tweak cost of callee saved registers, as using then force spilling and
622     // restoring them. This would only happen in the prologue / epilogue though.
623     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
624       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
625         NodeCosts[1 + i] += 1.0;
626 
627     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
628     G.getNodeMetadata(NId).setVReg(VReg);
629     G.getNodeMetadata(NId).setAllowedRegs(
630       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
631     G.getMetadata().setNodeIdForVReg(VReg, NId);
632   }
633 }
634 
spillVReg(unsigned VReg,SmallVectorImpl<unsigned> & NewIntervals,MachineFunction & MF,LiveIntervals & LIS,VirtRegMap & VRM,Spiller & VRegSpiller)635 void RegAllocPBQP::spillVReg(unsigned VReg,
636                              SmallVectorImpl<unsigned> &NewIntervals,
637                              MachineFunction &MF, LiveIntervals &LIS,
638                              VirtRegMap &VRM, Spiller &VRegSpiller) {
639 
640   VRegsToAlloc.erase(VReg);
641   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
642                     nullptr, &DeadRemats);
643   VRegSpiller.spill(LRE);
644 
645   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
646   (void)TRI;
647   DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
648                << LRE.getParent().weight << ", New vregs: ");
649 
650   // Copy any newly inserted live intervals into the list of regs to
651   // allocate.
652   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
653        I != E; ++I) {
654     const LiveInterval &LI = LIS.getInterval(*I);
655     assert(!LI.empty() && "Empty spill range.");
656     DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
657     VRegsToAlloc.insert(LI.reg);
658   }
659 
660   DEBUG(dbgs() << ")\n");
661 }
662 
mapPBQPToRegAlloc(const PBQPRAGraph & G,const PBQP::Solution & Solution,VirtRegMap & VRM,Spiller & VRegSpiller)663 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
664                                      const PBQP::Solution &Solution,
665                                      VirtRegMap &VRM,
666                                      Spiller &VRegSpiller) {
667   MachineFunction &MF = G.getMetadata().MF;
668   LiveIntervals &LIS = G.getMetadata().LIS;
669   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
670   (void)TRI;
671 
672   // Set to true if we have any spills
673   bool AnotherRoundNeeded = false;
674 
675   // Clear the existing allocation.
676   VRM.clearAllVirt();
677 
678   // Iterate over the nodes mapping the PBQP solution to a register
679   // assignment.
680   for (auto NId : G.nodeIds()) {
681     unsigned VReg = G.getNodeMetadata(NId).getVReg();
682     unsigned AllocOption = Solution.getSelection(NId);
683 
684     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
685       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
686       DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
687             << TRI.getName(PReg) << "\n");
688       assert(PReg != 0 && "Invalid preg selected.");
689       VRM.assignVirt2Phys(VReg, PReg);
690     } else {
691       // Spill VReg. If this introduces new intervals we'll need another round
692       // of allocation.
693       SmallVector<unsigned, 8> NewVRegs;
694       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
695       AnotherRoundNeeded |= !NewVRegs.empty();
696     }
697   }
698 
699   return !AnotherRoundNeeded;
700 }
701 
finalizeAlloc(MachineFunction & MF,LiveIntervals & LIS,VirtRegMap & VRM) const702 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
703                                  LiveIntervals &LIS,
704                                  VirtRegMap &VRM) const {
705   MachineRegisterInfo &MRI = MF.getRegInfo();
706 
707   // First allocate registers for the empty intervals.
708   for (RegSet::const_iterator
709          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
710          I != E; ++I) {
711     LiveInterval &LI = LIS.getInterval(*I);
712 
713     unsigned PReg = MRI.getSimpleHint(LI.reg);
714 
715     if (PReg == 0) {
716       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
717       PReg = RC.getRawAllocationOrder(MF).front();
718     }
719 
720     VRM.assignVirt2Phys(LI.reg, PReg);
721   }
722 }
723 
postOptimization(Spiller & VRegSpiller,LiveIntervals & LIS)724 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
725   VRegSpiller.postOptimization();
726   /// Remove dead defs because of rematerialization.
727   for (auto DeadInst : DeadRemats) {
728     LIS.RemoveMachineInstrFromMaps(*DeadInst);
729     DeadInst->eraseFromParent();
730   }
731   DeadRemats.clear();
732 }
733 
normalizePBQPSpillWeight(float UseDefFreq,unsigned Size,unsigned NumInstr)734 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
735                                          unsigned NumInstr) {
736   // All intervals have a spill weight that is mostly proportional to the number
737   // of uses, with uses in loops having a bigger weight.
738   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
739 }
740 
runOnMachineFunction(MachineFunction & MF)741 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
742   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
743   MachineBlockFrequencyInfo &MBFI =
744     getAnalysis<MachineBlockFrequencyInfo>();
745 
746   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
747 
748   calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
749                                 MBFI, normalizePBQPSpillWeight);
750 
751   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
752 
753   MF.getRegInfo().freezeReservedRegs(MF);
754 
755   DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
756 
757   // Allocator main loop:
758   //
759   // * Map current regalloc problem to a PBQP problem
760   // * Solve the PBQP problem
761   // * Map the solution back to a register allocation
762   // * Spill if necessary
763   //
764   // This process is continued till no more spills are generated.
765 
766   // Find the vreg intervals in need of allocation.
767   findVRegIntervalsToAlloc(MF, LIS);
768 
769 #ifndef NDEBUG
770   const Function &F = *MF.getFunction();
771   std::string FullyQualifiedName =
772     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
773 #endif
774 
775   // If there are non-empty intervals allocate them using pbqp.
776   if (!VRegsToAlloc.empty()) {
777 
778     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
779     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
780       llvm::make_unique<PBQPRAConstraintList>();
781     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
782     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
783     if (PBQPCoalescing)
784       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
785     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
786 
787     bool PBQPAllocComplete = false;
788     unsigned Round = 0;
789 
790     while (!PBQPAllocComplete) {
791       DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
792 
793       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
794       initializeGraph(G, VRM, *VRegSpiller);
795       ConstraintsRoot->apply(G);
796 
797 #ifndef NDEBUG
798       if (PBQPDumpGraphs) {
799         std::ostringstream RS;
800         RS << Round;
801         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
802                                     ".pbqpgraph";
803         std::error_code EC;
804         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
805         DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
806               << GraphFileName << "\"\n");
807         G.dump(OS);
808       }
809 #endif
810 
811       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
812       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
813       ++Round;
814     }
815   }
816 
817   // Finalise allocation, allocate empty ranges.
818   finalizeAlloc(MF, LIS, VRM);
819   postOptimization(*VRegSpiller, LIS);
820   VRegsToAlloc.clear();
821   EmptyIntervalVRegs.clear();
822 
823   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
824 
825   return true;
826 }
827 
828 /// Create Printable object for node and register info.
PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,const PBQP::RegAlloc::PBQPRAGraph & G)829 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
830                                const PBQP::RegAlloc::PBQPRAGraph &G) {
831   return Printable([NId, &G](raw_ostream &OS) {
832     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
833     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
834     unsigned VReg = G.getNodeMetadata(NId).getVReg();
835     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
836     OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
837   });
838 }
839 
dump(raw_ostream & OS) const840 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
841   for (auto NId : nodeIds()) {
842     const Vector &Costs = getNodeCosts(NId);
843     assert(Costs.getLength() != 0 && "Empty vector in graph.");
844     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
845   }
846   OS << '\n';
847 
848   for (auto EId : edgeIds()) {
849     NodeId N1Id = getEdgeNode1Id(EId);
850     NodeId N2Id = getEdgeNode2Id(EId);
851     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
852     const Matrix &M = getEdgeCosts(EId);
853     assert(M.getRows() != 0 && "No rows in matrix.");
854     assert(M.getCols() != 0 && "No cols in matrix.");
855     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
856     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
857     OS << M << '\n';
858   }
859 }
860 
dump() const861 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
862 
printDot(raw_ostream & OS) const863 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
864   OS << "graph {\n";
865   for (auto NId : nodeIds()) {
866     OS << "  node" << NId << " [ label=\""
867        << PrintNodeInfo(NId, *this) << "\\n"
868        << getNodeCosts(NId) << "\" ]\n";
869   }
870 
871   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
872   for (auto EId : edgeIds()) {
873     OS << "  node" << getEdgeNode1Id(EId)
874        << " -- node" << getEdgeNode2Id(EId)
875        << " [ label=\"";
876     const Matrix &EdgeCosts = getEdgeCosts(EId);
877     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
878       OS << EdgeCosts.getRowAsVector(i) << "\\n";
879     }
880     OS << "\" ]\n";
881   }
882   OS << "}\n";
883 }
884 
createPBQPRegisterAllocator(char * customPassID)885 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
886   return new RegAllocPBQP(customPassID);
887 }
888 
createDefaultPBQPRegisterAllocator()889 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
890   return createPBQPRegisterAllocator();
891 }
892 
893 #undef DEBUG_TYPE
894