1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetFrameLowering.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "function-lowering-info"
46 
47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
48 /// PHI nodes or outside of the basic block that defines it, or used by a
49 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
51   if (I->use_empty()) return false;
52   if (isa<PHINode>(I)) return true;
53   const BasicBlock *BB = I->getParent();
54   for (const User *U : I->users())
55     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
56       return true;
57 
58   return false;
59 }
60 
getPreferredExtendForValue(const Value * V)61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
62   // For the users of the source value being used for compare instruction, if
63   // the number of signed predicate is greater than unsigned predicate, we
64   // prefer to use SIGN_EXTEND.
65   //
66   // With this optimization, we would be able to reduce some redundant sign or
67   // zero extension instruction, and eventually more machine CSE opportunities
68   // can be exposed.
69   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
70   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
71   for (const User *U : V->users()) {
72     if (const auto *CI = dyn_cast<CmpInst>(U)) {
73       NumOfSigned += CI->isSigned();
74       NumOfUnsigned += CI->isUnsigned();
75     }
76   }
77   if (NumOfSigned > NumOfUnsigned)
78     ExtendKind = ISD::SIGN_EXTEND;
79 
80   return ExtendKind;
81 }
82 
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
84                                SelectionDAG *DAG) {
85   Fn = &fn;
86   MF = &mf;
87   TLI = MF->getSubtarget().getTargetLowering();
88   RegInfo = &MF->getRegInfo();
89   MachineModuleInfo &MMI = MF->getMMI();
90   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
91   unsigned StackAlign = TFI->getStackAlignment();
92 
93   // Check whether the function can return without sret-demotion.
94   SmallVector<ISD::OutputArg, 4> Outs;
95   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96                 mf.getDataLayout());
97   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
98                                        Fn->isVarArg(), Outs, Fn->getContext());
99 
100   // If this personality uses funclets, we need to do a bit more work.
101   DenseMap<const AllocaInst *, int *> CatchObjects;
102   EHPersonality Personality = classifyEHPersonality(
103       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104   if (isFuncletEHPersonality(Personality)) {
105     // Calculate state numbers if we haven't already.
106     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107     if (Personality == EHPersonality::MSVC_CXX)
108       calculateWinCXXEHStateNumbers(&fn, EHInfo);
109     else if (isAsynchronousEHPersonality(Personality))
110       calculateSEHStateNumbers(&fn, EHInfo);
111     else if (Personality == EHPersonality::CoreCLR)
112       calculateClrEHStateNumbers(&fn, EHInfo);
113 
114     // Map all BB references in the WinEH data to MBBs.
115     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116       for (WinEHHandlerType &H : TBME.HandlerArray) {
117         if (const AllocaInst *AI = H.CatchObj.Alloca)
118           CatchObjects.insert({AI, &H.CatchObj.FrameIndex});
119         else
120           H.CatchObj.FrameIndex = INT_MAX;
121       }
122     }
123   }
124 
125   // Initialize the mapping of values to registers.  This is only set up for
126   // instruction values that are used outside of the block that defines
127   // them.
128   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
129   for (; BB != EB; ++BB)
130     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
131          I != E; ++I) {
132       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
133         Type *Ty = AI->getAllocatedType();
134         unsigned Align =
135           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
136                    AI->getAlignment());
137 
138         // Static allocas can be folded into the initial stack frame
139         // adjustment. For targets that don't realign the stack, don't
140         // do this if there is an extra alignment requirement.
141         if (AI->isStaticAlloca() &&
142             (TFI->isStackRealignable() || (Align <= StackAlign))) {
143           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
144           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
145 
146           TySize *= CUI->getZExtValue();   // Get total allocated size.
147           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
148           int FrameIndex = INT_MAX;
149           auto Iter = CatchObjects.find(AI);
150           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
151             FrameIndex = MF->getFrameInfo()->CreateFixedObject(
152                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
153             MF->getFrameInfo()->setObjectAlignment(FrameIndex, Align);
154           } else {
155             FrameIndex =
156                 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
157           }
158 
159           StaticAllocaMap[AI] = FrameIndex;
160           // Update the catch handler information.
161           if (Iter != CatchObjects.end())
162             *Iter->second = FrameIndex;
163         } else {
164           // FIXME: Overaligned static allocas should be grouped into
165           // a single dynamic allocation instead of using a separate
166           // stack allocation for each one.
167           if (Align <= StackAlign)
168             Align = 0;
169           // Inform the Frame Information that we have variable-sized objects.
170           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
171         }
172       }
173 
174       // Look for inline asm that clobbers the SP register.
175       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
176         ImmutableCallSite CS(&*I);
177         if (isa<InlineAsm>(CS.getCalledValue())) {
178           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
179           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
180           std::vector<TargetLowering::AsmOperandInfo> Ops =
181               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
182           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
183             TargetLowering::AsmOperandInfo &Op = Ops[I];
184             if (Op.Type == InlineAsm::isClobber) {
185               // Clobbers don't have SDValue operands, hence SDValue().
186               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
187               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
188                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
189                                                     Op.ConstraintVT);
190               if (PhysReg.first == SP)
191                 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
192             }
193           }
194         }
195       }
196 
197       // Look for calls to the @llvm.va_start intrinsic. We can omit some
198       // prologue boilerplate for variadic functions that don't examine their
199       // arguments.
200       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
201         if (II->getIntrinsicID() == Intrinsic::vastart)
202           MF->getFrameInfo()->setHasVAStart(true);
203       }
204 
205       // If we have a musttail call in a variadic function, we need to ensure we
206       // forward implicit register parameters.
207       if (const auto *CI = dyn_cast<CallInst>(I)) {
208         if (CI->isMustTailCall() && Fn->isVarArg())
209           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
210       }
211 
212       // Mark values used outside their block as exported, by allocating
213       // a virtual register for them.
214       if (isUsedOutsideOfDefiningBlock(&*I))
215         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
216           InitializeRegForValue(&*I);
217 
218       // Collect llvm.dbg.declare information. This is done now instead of
219       // during the initial isel pass through the IR so that it is done
220       // in a predictable order.
221       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
222         assert(DI->getVariable() && "Missing variable");
223         assert(DI->getDebugLoc() && "Missing location");
224         if (MMI.hasDebugInfo()) {
225           // Don't handle byval struct arguments or VLAs, for example.
226           // Non-byval arguments are handled here (they refer to the stack
227           // temporary alloca at this point).
228           const Value *Address = DI->getAddress();
229           if (Address) {
230             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
231               Address = BCI->getOperand(0);
232             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
233               DenseMap<const AllocaInst *, int>::iterator SI =
234                 StaticAllocaMap.find(AI);
235               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
236                 int FI = SI->second;
237                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
238                                        FI, DI->getDebugLoc());
239               }
240             }
241           }
242         }
243       }
244 
245       // Decide the preferred extend type for a value.
246       PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
247     }
248 
249   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
250   // also creates the initial PHI MachineInstrs, though none of the input
251   // operands are populated.
252   for (BB = Fn->begin(); BB != EB; ++BB) {
253     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
254     // are really data, and no instructions can live here.
255     if (BB->isEHPad()) {
256       const Instruction *I = BB->getFirstNonPHI();
257       // If this is a non-landingpad EH pad, mark this function as using
258       // funclets.
259       // FIXME: SEH catchpads do not create funclets, so we could avoid setting
260       // this in such cases in order to improve frame layout.
261       if (!isa<LandingPadInst>(I)) {
262         MMI.setHasEHFunclets(true);
263         MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
264       }
265       if (isa<CatchSwitchInst>(I)) {
266         assert(&*BB->begin() == I &&
267                "WinEHPrepare failed to remove PHIs from imaginary BBs");
268         continue;
269       }
270       if (isa<FuncletPadInst>(I))
271         assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
272     }
273 
274     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
275     MBBMap[&*BB] = MBB;
276     MF->push_back(MBB);
277 
278     // Transfer the address-taken flag. This is necessary because there could
279     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
280     // the first one should be marked.
281     if (BB->hasAddressTaken())
282       MBB->setHasAddressTaken();
283 
284     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
285     // appropriate.
286     for (BasicBlock::const_iterator I = BB->begin();
287          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
288       if (PN->use_empty()) continue;
289 
290       // Skip empty types
291       if (PN->getType()->isEmptyTy())
292         continue;
293 
294       DebugLoc DL = PN->getDebugLoc();
295       unsigned PHIReg = ValueMap[PN];
296       assert(PHIReg && "PHI node does not have an assigned virtual register!");
297 
298       SmallVector<EVT, 4> ValueVTs;
299       ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
300       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
301         EVT VT = ValueVTs[vti];
302         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
303         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
304         for (unsigned i = 0; i != NumRegisters; ++i)
305           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
306         PHIReg += NumRegisters;
307       }
308     }
309   }
310 
311   // Mark landing pad blocks.
312   SmallVector<const LandingPadInst *, 4> LPads;
313   for (BB = Fn->begin(); BB != EB; ++BB) {
314     const Instruction *FNP = BB->getFirstNonPHI();
315     if (BB->isEHPad() && MBBMap.count(&*BB))
316       MBBMap[&*BB]->setIsEHPad();
317     if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
318       LPads.push_back(LPI);
319   }
320 
321   if (!isFuncletEHPersonality(Personality))
322     return;
323 
324   WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
325 
326   // Map all BB references in the WinEH data to MBBs.
327   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
328     for (WinEHHandlerType &H : TBME.HandlerArray) {
329       if (H.Handler)
330         H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
331     }
332   }
333   for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
334     if (UME.Cleanup)
335       UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
336   for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
337     const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
338     UME.Handler = MBBMap[BB];
339   }
340   for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
341     const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
342     CME.Handler = MBBMap[BB];
343   }
344 }
345 
346 /// clear - Clear out all the function-specific state. This returns this
347 /// FunctionLoweringInfo to an empty state, ready to be used for a
348 /// different function.
clear()349 void FunctionLoweringInfo::clear() {
350   MBBMap.clear();
351   ValueMap.clear();
352   StaticAllocaMap.clear();
353   LiveOutRegInfo.clear();
354   VisitedBBs.clear();
355   ArgDbgValues.clear();
356   ByValArgFrameIndexMap.clear();
357   RegFixups.clear();
358   StatepointStackSlots.clear();
359   StatepointSpillMaps.clear();
360   PreferredExtendType.clear();
361 }
362 
363 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)364 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
365   return RegInfo->createVirtualRegister(
366       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
367 }
368 
369 /// CreateRegs - Allocate the appropriate number of virtual registers of
370 /// the correctly promoted or expanded types.  Assign these registers
371 /// consecutive vreg numbers and return the first assigned number.
372 ///
373 /// In the case that the given value has struct or array type, this function
374 /// will assign registers for each member or element.
375 ///
CreateRegs(Type * Ty)376 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
377   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
378 
379   SmallVector<EVT, 4> ValueVTs;
380   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
381 
382   unsigned FirstReg = 0;
383   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
384     EVT ValueVT = ValueVTs[Value];
385     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
386 
387     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
388     for (unsigned i = 0; i != NumRegs; ++i) {
389       unsigned R = CreateReg(RegisterVT);
390       if (!FirstReg) FirstReg = R;
391     }
392   }
393   return FirstReg;
394 }
395 
396 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
397 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
398 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
399 /// the larger bit width by zero extension. The bit width must be no smaller
400 /// than the LiveOutInfo's existing bit width.
401 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)402 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
403   if (!LiveOutRegInfo.inBounds(Reg))
404     return nullptr;
405 
406   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
407   if (!LOI->IsValid)
408     return nullptr;
409 
410   if (BitWidth > LOI->KnownZero.getBitWidth()) {
411     LOI->NumSignBits = 1;
412     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
413     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
414   }
415 
416   return LOI;
417 }
418 
419 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
420 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)421 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
422   Type *Ty = PN->getType();
423   if (!Ty->isIntegerTy() || Ty->isVectorTy())
424     return;
425 
426   SmallVector<EVT, 1> ValueVTs;
427   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
428   assert(ValueVTs.size() == 1 &&
429          "PHIs with non-vector integer types should have a single VT.");
430   EVT IntVT = ValueVTs[0];
431 
432   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
433     return;
434   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
435   unsigned BitWidth = IntVT.getSizeInBits();
436 
437   unsigned DestReg = ValueMap[PN];
438   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
439     return;
440   LiveOutRegInfo.grow(DestReg);
441   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
442 
443   Value *V = PN->getIncomingValue(0);
444   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
445     DestLOI.NumSignBits = 1;
446     APInt Zero(BitWidth, 0);
447     DestLOI.KnownZero = Zero;
448     DestLOI.KnownOne = Zero;
449     return;
450   }
451 
452   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
453     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
454     DestLOI.NumSignBits = Val.getNumSignBits();
455     DestLOI.KnownZero = ~Val;
456     DestLOI.KnownOne = Val;
457   } else {
458     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
459                                 "CopyToReg node was created.");
460     unsigned SrcReg = ValueMap[V];
461     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
462       DestLOI.IsValid = false;
463       return;
464     }
465     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
466     if (!SrcLOI) {
467       DestLOI.IsValid = false;
468       return;
469     }
470     DestLOI = *SrcLOI;
471   }
472 
473   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
474          DestLOI.KnownOne.getBitWidth() == BitWidth &&
475          "Masks should have the same bit width as the type.");
476 
477   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
478     Value *V = PN->getIncomingValue(i);
479     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
480       DestLOI.NumSignBits = 1;
481       APInt Zero(BitWidth, 0);
482       DestLOI.KnownZero = Zero;
483       DestLOI.KnownOne = Zero;
484       return;
485     }
486 
487     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
488       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
489       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
490       DestLOI.KnownZero &= ~Val;
491       DestLOI.KnownOne &= Val;
492       continue;
493     }
494 
495     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
496                                 "its CopyToReg node was created.");
497     unsigned SrcReg = ValueMap[V];
498     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
499       DestLOI.IsValid = false;
500       return;
501     }
502     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
503     if (!SrcLOI) {
504       DestLOI.IsValid = false;
505       return;
506     }
507     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
508     DestLOI.KnownZero &= SrcLOI->KnownZero;
509     DestLOI.KnownOne &= SrcLOI->KnownOne;
510   }
511 }
512 
513 /// setArgumentFrameIndex - Record frame index for the byval
514 /// argument. This overrides previous frame index entry for this argument,
515 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)516 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
517                                                  int FI) {
518   ByValArgFrameIndexMap[A] = FI;
519 }
520 
521 /// getArgumentFrameIndex - Get frame index for the byval argument.
522 /// If the argument does not have any assigned frame index then 0 is
523 /// returned.
getArgumentFrameIndex(const Argument * A)524 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
525   DenseMap<const Argument *, int>::iterator I =
526     ByValArgFrameIndexMap.find(A);
527   if (I != ByValArgFrameIndexMap.end())
528     return I->second;
529   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
530   return 0;
531 }
532 
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)533 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
534     const Value *CPI, const TargetRegisterClass *RC) {
535   MachineRegisterInfo &MRI = MF->getRegInfo();
536   auto I = CatchPadExceptionPointers.insert({CPI, 0});
537   unsigned &VReg = I.first->second;
538   if (I.second)
539     VReg = MRI.createVirtualRegister(RC);
540   assert(VReg && "null vreg in exception pointer table!");
541   return VReg;
542 }
543 
544 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
545 /// being passed to this variadic function, and set the MachineModuleInfo's
546 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
547 /// reference to _fltused on Windows, which will link in MSVCRT's
548 /// floating-point support.
ComputeUsesVAFloatArgument(const CallInst & I,MachineModuleInfo * MMI)549 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
550                                       MachineModuleInfo *MMI)
551 {
552   FunctionType *FT = cast<FunctionType>(
553     I.getCalledValue()->getType()->getContainedType(0));
554   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
555     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
556       Type* T = I.getArgOperand(i)->getType();
557       for (auto i : post_order(T)) {
558         if (i->isFloatingPointTy()) {
559           MMI->setUsesVAFloatArgument(true);
560           return;
561         }
562       }
563     }
564   }
565 }
566 
567 /// AddLandingPadInfo - Extract the exception handling information from the
568 /// landingpad instruction and add them to the specified machine module info.
AddLandingPadInfo(const LandingPadInst & I,MachineModuleInfo & MMI,MachineBasicBlock * MBB)569 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
570                              MachineBasicBlock *MBB) {
571   if (const auto *PF = dyn_cast<Function>(
572       I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
573     MMI.addPersonality(PF);
574 
575   if (I.isCleanup())
576     MMI.addCleanup(MBB);
577 
578   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
579   //        but we need to do it this way because of how the DWARF EH emitter
580   //        processes the clauses.
581   for (unsigned i = I.getNumClauses(); i != 0; --i) {
582     Value *Val = I.getClause(i - 1);
583     if (I.isCatch(i - 1)) {
584       MMI.addCatchTypeInfo(MBB,
585                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
586     } else {
587       // Add filters in a list.
588       Constant *CVal = cast<Constant>(Val);
589       SmallVector<const GlobalValue*, 4> FilterList;
590       for (User::op_iterator
591              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
592         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
593 
594       MMI.addFilterTypeInfo(MBB, FilterList);
595     }
596   }
597 }
598 
findSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val) const599 unsigned FunctionLoweringInfo::findSwiftErrorVReg(const MachineBasicBlock *MBB,
600                                                   const Value* Val) const {
601   // Find the index in SwiftErrorVals.
602   SwiftErrorValues::const_iterator I =
603       std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
604   assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
605   return SwiftErrorMap.lookup(MBB)[I - SwiftErrorVals.begin()];
606 }
607 
setSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val,unsigned VReg)608 void FunctionLoweringInfo::setSwiftErrorVReg(const MachineBasicBlock *MBB,
609                                              const Value* Val, unsigned VReg) {
610   // Find the index in SwiftErrorVals.
611   SwiftErrorValues::iterator I =
612       std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
613   assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
614   SwiftErrorMap[MBB][I - SwiftErrorVals.begin()] = VReg;
615 }
616