1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108   SDValue ExpandBITREVERSE(SDValue Op);
109   SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);
110 
111   /// \brief Implements vector promotion.
112   ///
113   /// This is essentially just bitcasting the operands to a different type and
114   /// bitcasting the result back to the original type.
115   SDValue Promote(SDValue Op);
116 
117   /// \brief Implements [SU]INT_TO_FP vector promotion.
118   ///
119   /// This is a [zs]ext of the input operand to the next size up.
120   SDValue PromoteINT_TO_FP(SDValue Op);
121 
122   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
123   ///
124   /// It is promoted to the next size up integer type.  The result is then
125   /// truncated back to the original type.
126   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
127 
128 public:
129   /// \brief Begin legalizer the vector operations in the DAG.
130   bool Run();
VectorLegalizer(SelectionDAG & dag)131   VectorLegalizer(SelectionDAG& dag) :
132       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
133 };
134 
Run()135 bool VectorLegalizer::Run() {
136   // Before we start legalizing vector nodes, check if there are any vectors.
137   bool HasVectors = false;
138   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
139        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
140     // Check if the values of the nodes contain vectors. We don't need to check
141     // the operands because we are going to check their values at some point.
142     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
143          J != E; ++J)
144       HasVectors |= J->isVector();
145 
146     // If we found a vector node we can start the legalization.
147     if (HasVectors)
148       break;
149   }
150 
151   // If this basic block has no vectors then no need to legalize vectors.
152   if (!HasVectors)
153     return false;
154 
155   // The legalize process is inherently a bottom-up recursive process (users
156   // legalize their uses before themselves).  Given infinite stack space, we
157   // could just start legalizing on the root and traverse the whole graph.  In
158   // practice however, this causes us to run out of stack space on large basic
159   // blocks.  To avoid this problem, compute an ordering of the nodes where each
160   // node is only legalized after all of its operands are legalized.
161   DAG.AssignTopologicalOrder();
162   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
163        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
164     LegalizeOp(SDValue(&*I, 0));
165 
166   // Finally, it's possible the root changed.  Get the new root.
167   SDValue OldRoot = DAG.getRoot();
168   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
169   DAG.setRoot(LegalizedNodes[OldRoot]);
170 
171   LegalizedNodes.clear();
172 
173   // Remove dead nodes now.
174   DAG.RemoveDeadNodes();
175 
176   return Changed;
177 }
178 
TranslateLegalizeResults(SDValue Op,SDValue Result)179 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
180   // Generic legalization: just pass the operand through.
181   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
182     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
183   return Result.getValue(Op.getResNo());
184 }
185 
LegalizeOp(SDValue Op)186 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
187   // Note that LegalizeOp may be reentered even from single-use nodes, which
188   // means that we always must cache transformed nodes.
189   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
190   if (I != LegalizedNodes.end()) return I->second;
191 
192   SDNode* Node = Op.getNode();
193 
194   // Legalize the operands
195   SmallVector<SDValue, 8> Ops;
196   for (const SDValue &Op : Node->op_values())
197     Ops.push_back(LegalizeOp(Op));
198 
199   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
200 
201   bool HasVectorValue = false;
202   if (Op.getOpcode() == ISD::LOAD) {
203     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
204     ISD::LoadExtType ExtType = LD->getExtensionType();
205     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
206       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
207                                    LD->getMemoryVT())) {
208       default: llvm_unreachable("This action is not supported yet!");
209       case TargetLowering::Legal:
210         return TranslateLegalizeResults(Op, Result);
211       case TargetLowering::Custom:
212         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
213           if (Lowered == Result)
214             return TranslateLegalizeResults(Op, Lowered);
215           Changed = true;
216           if (Lowered->getNumValues() != Op->getNumValues()) {
217             // This expanded to something other than the load. Assume the
218             // lowering code took care of any chain values, and just handle the
219             // returned value.
220             assert(Result.getValue(1).use_empty() &&
221                    "There are still live users of the old chain!");
222             return LegalizeOp(Lowered);
223           }
224           return TranslateLegalizeResults(Op, Lowered);
225         }
226       case TargetLowering::Expand:
227         Changed = true;
228         return LegalizeOp(ExpandLoad(Op));
229       }
230   } else if (Op.getOpcode() == ISD::STORE) {
231     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
232     EVT StVT = ST->getMemoryVT();
233     MVT ValVT = ST->getValue().getSimpleValueType();
234     if (StVT.isVector() && ST->isTruncatingStore())
235       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
236       default: llvm_unreachable("This action is not supported yet!");
237       case TargetLowering::Legal:
238         return TranslateLegalizeResults(Op, Result);
239       case TargetLowering::Custom: {
240         SDValue Lowered = TLI.LowerOperation(Result, DAG);
241         Changed = Lowered != Result;
242         return TranslateLegalizeResults(Op, Lowered);
243       }
244       case TargetLowering::Expand:
245         Changed = true;
246         return LegalizeOp(ExpandStore(Op));
247       }
248   } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
249     HasVectorValue = true;
250 
251   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
252        J != E;
253        ++J)
254     HasVectorValue |= J->isVector();
255   if (!HasVectorValue)
256     return TranslateLegalizeResults(Op, Result);
257 
258   EVT QueryType;
259   switch (Op.getOpcode()) {
260   default:
261     return TranslateLegalizeResults(Op, Result);
262   case ISD::ADD:
263   case ISD::SUB:
264   case ISD::MUL:
265   case ISD::SDIV:
266   case ISD::UDIV:
267   case ISD::SREM:
268   case ISD::UREM:
269   case ISD::SDIVREM:
270   case ISD::UDIVREM:
271   case ISD::FADD:
272   case ISD::FSUB:
273   case ISD::FMUL:
274   case ISD::FDIV:
275   case ISD::FREM:
276   case ISD::AND:
277   case ISD::OR:
278   case ISD::XOR:
279   case ISD::SHL:
280   case ISD::SRA:
281   case ISD::SRL:
282   case ISD::ROTL:
283   case ISD::ROTR:
284   case ISD::BSWAP:
285   case ISD::BITREVERSE:
286   case ISD::CTLZ:
287   case ISD::CTTZ:
288   case ISD::CTLZ_ZERO_UNDEF:
289   case ISD::CTTZ_ZERO_UNDEF:
290   case ISD::CTPOP:
291   case ISD::SELECT:
292   case ISD::VSELECT:
293   case ISD::SELECT_CC:
294   case ISD::SETCC:
295   case ISD::ZERO_EXTEND:
296   case ISD::ANY_EXTEND:
297   case ISD::TRUNCATE:
298   case ISD::SIGN_EXTEND:
299   case ISD::FP_TO_SINT:
300   case ISD::FP_TO_UINT:
301   case ISD::FNEG:
302   case ISD::FABS:
303   case ISD::FMINNUM:
304   case ISD::FMAXNUM:
305   case ISD::FMINNAN:
306   case ISD::FMAXNAN:
307   case ISD::FCOPYSIGN:
308   case ISD::FSQRT:
309   case ISD::FSIN:
310   case ISD::FCOS:
311   case ISD::FPOWI:
312   case ISD::FPOW:
313   case ISD::FLOG:
314   case ISD::FLOG2:
315   case ISD::FLOG10:
316   case ISD::FEXP:
317   case ISD::FEXP2:
318   case ISD::FCEIL:
319   case ISD::FTRUNC:
320   case ISD::FRINT:
321   case ISD::FNEARBYINT:
322   case ISD::FROUND:
323   case ISD::FFLOOR:
324   case ISD::FP_ROUND:
325   case ISD::FP_EXTEND:
326   case ISD::FMA:
327   case ISD::SIGN_EXTEND_INREG:
328   case ISD::ANY_EXTEND_VECTOR_INREG:
329   case ISD::SIGN_EXTEND_VECTOR_INREG:
330   case ISD::ZERO_EXTEND_VECTOR_INREG:
331   case ISD::SMIN:
332   case ISD::SMAX:
333   case ISD::UMIN:
334   case ISD::UMAX:
335     QueryType = Node->getValueType(0);
336     break;
337   case ISD::FP_ROUND_INREG:
338     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
339     break;
340   case ISD::SINT_TO_FP:
341   case ISD::UINT_TO_FP:
342     QueryType = Node->getOperand(0).getValueType();
343     break;
344   case ISD::MSCATTER:
345     QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
346     break;
347   case ISD::MSTORE:
348     QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
349     break;
350   }
351 
352   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
353   default: llvm_unreachable("This action is not supported yet!");
354   case TargetLowering::Promote:
355     Result = Promote(Op);
356     Changed = true;
357     break;
358   case TargetLowering::Legal:
359     break;
360   case TargetLowering::Custom: {
361     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
362       Result = Tmp1;
363       break;
364     }
365     // FALL THROUGH
366   }
367   case TargetLowering::Expand:
368     Result = Expand(Op);
369   }
370 
371   // Make sure that the generated code is itself legal.
372   if (Result != Op) {
373     Result = LegalizeOp(Result);
374     Changed = true;
375   }
376 
377   // Note that LegalizeOp may be reentered even from single-use nodes, which
378   // means that we always must cache transformed nodes.
379   AddLegalizedOperand(Op, Result);
380   return Result;
381 }
382 
Promote(SDValue Op)383 SDValue VectorLegalizer::Promote(SDValue Op) {
384   // For a few operations there is a specific concept for promotion based on
385   // the operand's type.
386   switch (Op.getOpcode()) {
387   case ISD::SINT_TO_FP:
388   case ISD::UINT_TO_FP:
389     // "Promote" the operation by extending the operand.
390     return PromoteINT_TO_FP(Op);
391   case ISD::FP_TO_UINT:
392   case ISD::FP_TO_SINT:
393     // Promote the operation by extending the operand.
394     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
395   }
396 
397   // There are currently two cases of vector promotion:
398   // 1) Bitcasting a vector of integers to a different type to a vector of the
399   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
400   // 2) Extending a vector of floats to a vector of the same number of larger
401   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
402   MVT VT = Op.getSimpleValueType();
403   assert(Op.getNode()->getNumValues() == 1 &&
404          "Can't promote a vector with multiple results!");
405   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
406   SDLoc dl(Op);
407   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
408 
409   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
410     if (Op.getOperand(j).getValueType().isVector())
411       if (Op.getOperand(j)
412               .getValueType()
413               .getVectorElementType()
414               .isFloatingPoint() &&
415           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
416         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
417       else
418         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
419     else
420       Operands[j] = Op.getOperand(j);
421   }
422 
423   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
424   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
425       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
426        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
427     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
428   else
429     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
430 }
431 
PromoteINT_TO_FP(SDValue Op)432 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
433   // INT_TO_FP operations may require the input operand be promoted even
434   // when the type is otherwise legal.
435   EVT VT = Op.getOperand(0).getValueType();
436   assert(Op.getNode()->getNumValues() == 1 &&
437          "Can't promote a vector with multiple results!");
438 
439   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
440   // by widening the vector w/ the same element width and twice the number
441   // of elements. We want the other way around, the same number of elements,
442   // each twice the width.
443   //
444   // Increase the bitwidth of the element to the next pow-of-two
445   // (which is greater than 8 bits).
446 
447   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
448   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
449   SDLoc dl(Op);
450   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
451 
452   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
453     ISD::SIGN_EXTEND;
454   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
455     if (Op.getOperand(j).getValueType().isVector())
456       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
457     else
458       Operands[j] = Op.getOperand(j);
459   }
460 
461   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
462 }
463 
464 // For FP_TO_INT we promote the result type to a vector type with wider
465 // elements and then truncate the result.  This is different from the default
466 // PromoteVector which uses bitcast to promote thus assumning that the
467 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)468 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
469   assert(Op.getNode()->getNumValues() == 1 &&
470          "Can't promote a vector with multiple results!");
471   EVT VT = Op.getValueType();
472 
473   EVT NewVT;
474   unsigned NewOpc;
475   while (1) {
476     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
477     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
478     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
479       NewOpc = ISD::FP_TO_SINT;
480       break;
481     }
482     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
483       NewOpc = ISD::FP_TO_UINT;
484       break;
485     }
486   }
487 
488   SDLoc loc(Op);
489   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
490   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
491 }
492 
493 
ExpandLoad(SDValue Op)494 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
495   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
496 
497   EVT SrcVT = LD->getMemoryVT();
498   EVT SrcEltVT = SrcVT.getScalarType();
499   unsigned NumElem = SrcVT.getVectorNumElements();
500 
501 
502   SDValue NewChain;
503   SDValue Value;
504   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
505     SDLoc dl(Op);
506 
507     SmallVector<SDValue, 8> Vals;
508     SmallVector<SDValue, 8> LoadChains;
509 
510     EVT DstEltVT = LD->getValueType(0).getScalarType();
511     SDValue Chain = LD->getChain();
512     SDValue BasePTR = LD->getBasePtr();
513     ISD::LoadExtType ExtType = LD->getExtensionType();
514 
515     // When elements in a vector is not byte-addressable, we cannot directly
516     // load each element by advancing pointer, which could only address bytes.
517     // Instead, we load all significant words, mask bits off, and concatenate
518     // them to form each element. Finally, they are extended to destination
519     // scalar type to build the destination vector.
520     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
521 
522     assert(WideVT.isRound() &&
523            "Could not handle the sophisticated case when the widest integer is"
524            " not power of 2.");
525     assert(WideVT.bitsGE(SrcEltVT) &&
526            "Type is not legalized?");
527 
528     unsigned WideBytes = WideVT.getStoreSize();
529     unsigned Offset = 0;
530     unsigned RemainingBytes = SrcVT.getStoreSize();
531     SmallVector<SDValue, 8> LoadVals;
532 
533     while (RemainingBytes > 0) {
534       SDValue ScalarLoad;
535       unsigned LoadBytes = WideBytes;
536 
537       if (RemainingBytes >= LoadBytes) {
538         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
539                                  LD->getPointerInfo().getWithOffset(Offset),
540                                  LD->isVolatile(), LD->isNonTemporal(),
541                                  LD->isInvariant(),
542                                  MinAlign(LD->getAlignment(), Offset),
543                                  LD->getAAInfo());
544       } else {
545         EVT LoadVT = WideVT;
546         while (RemainingBytes < LoadBytes) {
547           LoadBytes >>= 1; // Reduce the load size by half.
548           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
549         }
550         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
551                                     LD->getPointerInfo().getWithOffset(Offset),
552                                     LoadVT, LD->isVolatile(),
553                                     LD->isNonTemporal(), LD->isInvariant(),
554                                     MinAlign(LD->getAlignment(), Offset),
555                                     LD->getAAInfo());
556       }
557 
558       RemainingBytes -= LoadBytes;
559       Offset += LoadBytes;
560       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
561                             DAG.getConstant(LoadBytes, dl,
562                                             BasePTR.getValueType()));
563 
564       LoadVals.push_back(ScalarLoad.getValue(0));
565       LoadChains.push_back(ScalarLoad.getValue(1));
566     }
567 
568     // Extract bits, pack and extend/trunc them into destination type.
569     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
570     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
571 
572     unsigned BitOffset = 0;
573     unsigned WideIdx = 0;
574     unsigned WideBits = WideVT.getSizeInBits();
575 
576     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
577       SDValue Lo, Hi, ShAmt;
578 
579       if (BitOffset < WideBits) {
580         ShAmt = DAG.getConstant(
581             BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
582         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
583         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
584       }
585 
586       BitOffset += SrcEltBits;
587       if (BitOffset >= WideBits) {
588         WideIdx++;
589         BitOffset -= WideBits;
590         if (BitOffset > 0) {
591           ShAmt = DAG.getConstant(
592               SrcEltBits - BitOffset, dl,
593               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
594           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
595           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
596         }
597       }
598 
599       if (Hi.getNode())
600         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
601 
602       switch (ExtType) {
603       default: llvm_unreachable("Unknown extended-load op!");
604       case ISD::EXTLOAD:
605         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
606         break;
607       case ISD::ZEXTLOAD:
608         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
609         break;
610       case ISD::SEXTLOAD:
611         ShAmt =
612             DAG.getConstant(WideBits - SrcEltBits, dl,
613                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
614         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
615         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
616         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
617         break;
618       }
619       Vals.push_back(Lo);
620     }
621 
622     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
623     Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
624                         Op.getNode()->getValueType(0), Vals);
625   } else {
626     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
627 
628     NewChain = Scalarized.getValue(1);
629     Value = Scalarized.getValue(0);
630   }
631 
632   AddLegalizedOperand(Op.getValue(0), Value);
633   AddLegalizedOperand(Op.getValue(1), NewChain);
634 
635   return (Op.getResNo() ? NewChain : Value);
636 }
637 
ExpandStore(SDValue Op)638 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
639   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
640 
641   EVT StVT = ST->getMemoryVT();
642   EVT MemSclVT = StVT.getScalarType();
643   unsigned ScalarSize = MemSclVT.getSizeInBits();
644 
645   // Round odd types to the next pow of two.
646   if (!isPowerOf2_32(ScalarSize)) {
647     // FIXME: This is completely broken and inconsistent with ExpandLoad
648     // handling.
649 
650     // For sub-byte element sizes, this ends up with 0 stride between elements,
651     // so the same element just gets re-written to the same location. There seem
652     // to be tests explicitly testing for this broken behavior though.  tests
653     // for this broken behavior.
654 
655     LLVMContext &Ctx = *DAG.getContext();
656 
657     EVT NewMemVT
658       = EVT::getVectorVT(Ctx,
659                          MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)),
660                          StVT.getVectorNumElements());
661 
662     SDValue NewVectorStore
663       = DAG.getTruncStore(ST->getChain(), SDLoc(Op), ST->getValue(),
664                           ST->getBasePtr(),
665                           ST->getPointerInfo(), NewMemVT,
666                           ST->isVolatile(), ST->isNonTemporal(),
667                           ST->getAlignment(),
668                           ST->getAAInfo());
669     ST = cast<StoreSDNode>(NewVectorStore.getNode());
670   }
671 
672   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
673   AddLegalizedOperand(Op, TF);
674   return TF;
675 }
676 
Expand(SDValue Op)677 SDValue VectorLegalizer::Expand(SDValue Op) {
678   switch (Op->getOpcode()) {
679   case ISD::SIGN_EXTEND_INREG:
680     return ExpandSEXTINREG(Op);
681   case ISD::ANY_EXTEND_VECTOR_INREG:
682     return ExpandANY_EXTEND_VECTOR_INREG(Op);
683   case ISD::SIGN_EXTEND_VECTOR_INREG:
684     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
685   case ISD::ZERO_EXTEND_VECTOR_INREG:
686     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
687   case ISD::BSWAP:
688     return ExpandBSWAP(Op);
689   case ISD::VSELECT:
690     return ExpandVSELECT(Op);
691   case ISD::SELECT:
692     return ExpandSELECT(Op);
693   case ISD::UINT_TO_FP:
694     return ExpandUINT_TO_FLOAT(Op);
695   case ISD::FNEG:
696     return ExpandFNEG(Op);
697   case ISD::SETCC:
698     return UnrollVSETCC(Op);
699   case ISD::BITREVERSE:
700     return ExpandBITREVERSE(Op);
701   case ISD::CTLZ_ZERO_UNDEF:
702   case ISD::CTTZ_ZERO_UNDEF:
703     return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
704   default:
705     return DAG.UnrollVectorOp(Op.getNode());
706   }
707 }
708 
ExpandSELECT(SDValue Op)709 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
710   // Lower a select instruction where the condition is a scalar and the
711   // operands are vectors. Lower this select to VSELECT and implement it
712   // using XOR AND OR. The selector bit is broadcasted.
713   EVT VT = Op.getValueType();
714   SDLoc DL(Op);
715 
716   SDValue Mask = Op.getOperand(0);
717   SDValue Op1 = Op.getOperand(1);
718   SDValue Op2 = Op.getOperand(2);
719 
720   assert(VT.isVector() && !Mask.getValueType().isVector()
721          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
722 
723   unsigned NumElem = VT.getVectorNumElements();
724 
725   // If we can't even use the basic vector operations of
726   // AND,OR,XOR, we will have to scalarize the op.
727   // Notice that the operation may be 'promoted' which means that it is
728   // 'bitcasted' to another type which is handled.
729   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
730   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
731       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
732       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
733       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
734     return DAG.UnrollVectorOp(Op.getNode());
735 
736   // Generate a mask operand.
737   EVT MaskTy = VT.changeVectorElementTypeToInteger();
738 
739   // What is the size of each element in the vector mask.
740   EVT BitTy = MaskTy.getScalarType();
741 
742   Mask = DAG.getSelect(DL, BitTy, Mask,
743           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
744                           BitTy),
745           DAG.getConstant(0, DL, BitTy));
746 
747   // Broadcast the mask so that the entire vector is all-one or all zero.
748   SmallVector<SDValue, 8> Ops(NumElem, Mask);
749   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
750 
751   // Bitcast the operands to be the same type as the mask.
752   // This is needed when we select between FP types because
753   // the mask is a vector of integers.
754   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
755   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
756 
757   SDValue AllOnes = DAG.getConstant(
758             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
759   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
760 
761   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
762   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
763   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
764   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
765 }
766 
ExpandSEXTINREG(SDValue Op)767 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
768   EVT VT = Op.getValueType();
769 
770   // Make sure that the SRA and SHL instructions are available.
771   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
772       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
773     return DAG.UnrollVectorOp(Op.getNode());
774 
775   SDLoc DL(Op);
776   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
777 
778   unsigned BW = VT.getScalarType().getSizeInBits();
779   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
780   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
781 
782   Op = Op.getOperand(0);
783   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
784   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
785 }
786 
787 // Generically expand a vector anyext in register to a shuffle of the relevant
788 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)789 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
790   SDLoc DL(Op);
791   EVT VT = Op.getValueType();
792   int NumElements = VT.getVectorNumElements();
793   SDValue Src = Op.getOperand(0);
794   EVT SrcVT = Src.getValueType();
795   int NumSrcElements = SrcVT.getVectorNumElements();
796 
797   // Build a base mask of undef shuffles.
798   SmallVector<int, 16> ShuffleMask;
799   ShuffleMask.resize(NumSrcElements, -1);
800 
801   // Place the extended lanes into the correct locations.
802   int ExtLaneScale = NumSrcElements / NumElements;
803   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
804   for (int i = 0; i < NumElements; ++i)
805     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
806 
807   return DAG.getNode(
808       ISD::BITCAST, DL, VT,
809       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
810 }
811 
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)812 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
813   SDLoc DL(Op);
814   EVT VT = Op.getValueType();
815   SDValue Src = Op.getOperand(0);
816   EVT SrcVT = Src.getValueType();
817 
818   // First build an any-extend node which can be legalized above when we
819   // recurse through it.
820   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
821 
822   // Now we need sign extend. Do this by shifting the elements. Even if these
823   // aren't legal operations, they have a better chance of being legalized
824   // without full scalarization than the sign extension does.
825   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
826   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
827   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
828   return DAG.getNode(ISD::SRA, DL, VT,
829                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
830                      ShiftAmount);
831 }
832 
833 // Generically expand a vector zext in register to a shuffle of the relevant
834 // lanes into the appropriate locations, a blend of zero into the high bits,
835 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)836 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
837   SDLoc DL(Op);
838   EVT VT = Op.getValueType();
839   int NumElements = VT.getVectorNumElements();
840   SDValue Src = Op.getOperand(0);
841   EVT SrcVT = Src.getValueType();
842   int NumSrcElements = SrcVT.getVectorNumElements();
843 
844   // Build up a zero vector to blend into this one.
845   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
846 
847   // Shuffle the incoming lanes into the correct position, and pull all other
848   // lanes from the zero vector.
849   SmallVector<int, 16> ShuffleMask;
850   ShuffleMask.reserve(NumSrcElements);
851   for (int i = 0; i < NumSrcElements; ++i)
852     ShuffleMask.push_back(i);
853 
854   int ExtLaneScale = NumSrcElements / NumElements;
855   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
856   for (int i = 0; i < NumElements; ++i)
857     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
858 
859   return DAG.getNode(ISD::BITCAST, DL, VT,
860                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
861 }
862 
createBSWAPShuffleMask(EVT VT,SmallVectorImpl<int> & ShuffleMask)863 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
864   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
865   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
866     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
867       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
868 }
869 
ExpandBSWAP(SDValue Op)870 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
871   EVT VT = Op.getValueType();
872 
873   // Generate a byte wise shuffle mask for the BSWAP.
874   SmallVector<int, 16> ShuffleMask;
875   createBSWAPShuffleMask(VT, ShuffleMask);
876   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
877 
878   // Only emit a shuffle if the mask is legal.
879   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
880     return DAG.UnrollVectorOp(Op.getNode());
881 
882   SDLoc DL(Op);
883   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
884   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
885   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
886 }
887 
ExpandBITREVERSE(SDValue Op)888 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
889   EVT VT = Op.getValueType();
890 
891   // If we have the scalar operation, it's probably cheaper to unroll it.
892   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
893     return DAG.UnrollVectorOp(Op.getNode());
894 
895   // If the vector element width is a whole number of bytes, test if its legal
896   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
897   // vector. This greatly reduces the number of bit shifts necessary.
898   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
899   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
900     SmallVector<int, 16> BSWAPMask;
901     createBSWAPShuffleMask(VT, BSWAPMask);
902 
903     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
904     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
905         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
906          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
907           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
908           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
909           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
910       SDLoc DL(Op);
911       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
912       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
913                                 BSWAPMask);
914       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
915       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
916     }
917   }
918 
919   // If we have the appropriate vector bit operations, it is better to use them
920   // than unrolling and expanding each component.
921   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
922       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
923       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
924       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
925     return DAG.UnrollVectorOp(Op.getNode());
926 
927   // Let LegalizeDAG handle this later.
928   return Op;
929 }
930 
ExpandVSELECT(SDValue Op)931 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
932   // Implement VSELECT in terms of XOR, AND, OR
933   // on platforms which do not support blend natively.
934   SDLoc DL(Op);
935 
936   SDValue Mask = Op.getOperand(0);
937   SDValue Op1 = Op.getOperand(1);
938   SDValue Op2 = Op.getOperand(2);
939 
940   EVT VT = Mask.getValueType();
941 
942   // If we can't even use the basic vector operations of
943   // AND,OR,XOR, we will have to scalarize the op.
944   // Notice that the operation may be 'promoted' which means that it is
945   // 'bitcasted' to another type which is handled.
946   // This operation also isn't safe with AND, OR, XOR when the boolean
947   // type is 0/1 as we need an all ones vector constant to mask with.
948   // FIXME: Sign extend 1 to all ones if thats legal on the target.
949   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
950       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
951       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
952       TLI.getBooleanContents(Op1.getValueType()) !=
953           TargetLowering::ZeroOrNegativeOneBooleanContent)
954     return DAG.UnrollVectorOp(Op.getNode());
955 
956   // If the mask and the type are different sizes, unroll the vector op. This
957   // can occur when getSetCCResultType returns something that is different in
958   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
959   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
960     return DAG.UnrollVectorOp(Op.getNode());
961 
962   // Bitcast the operands to be the same type as the mask.
963   // This is needed when we select between FP types because
964   // the mask is a vector of integers.
965   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
966   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
967 
968   SDValue AllOnes = DAG.getConstant(
969     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
970   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
971 
972   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
973   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
974   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
975   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
976 }
977 
ExpandUINT_TO_FLOAT(SDValue Op)978 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
979   EVT VT = Op.getOperand(0).getValueType();
980   SDLoc DL(Op);
981 
982   // Make sure that the SINT_TO_FP and SRL instructions are available.
983   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
984       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
985     return DAG.UnrollVectorOp(Op.getNode());
986 
987  EVT SVT = VT.getScalarType();
988   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
989       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
990 
991   unsigned BW = SVT.getSizeInBits();
992   SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
993 
994   // Constants to clear the upper part of the word.
995   // Notice that we can also use SHL+SHR, but using a constant is slightly
996   // faster on x86.
997   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
998   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
999 
1000   // Two to the power of half-word-size.
1001   SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
1002 
1003   // Clear upper part of LO, lower HI
1004   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1005   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1006 
1007   // Convert hi and lo to floats
1008   // Convert the hi part back to the upper values
1009   // TODO: Can any fast-math-flags be set on these nodes?
1010   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1011           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1012   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1013 
1014   // Add the two halves
1015   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1016 }
1017 
1018 
ExpandFNEG(SDValue Op)1019 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1020   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1021     SDLoc DL(Op);
1022     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1023     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1024     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1025                        Zero, Op.getOperand(0));
1026   }
1027   return DAG.UnrollVectorOp(Op.getNode());
1028 }
1029 
ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op)1030 SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
1031   // If the non-ZERO_UNDEF version is supported we can use that instead.
1032   unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
1033   if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) {
1034     SDLoc DL(Op);
1035     return DAG.getNode(Opc, DL, Op.getValueType(), Op.getOperand(0));
1036   }
1037 
1038   // Otherwise go ahead and unroll.
1039   return DAG.UnrollVectorOp(Op.getNode());
1040 }
1041 
UnrollVSETCC(SDValue Op)1042 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1043   EVT VT = Op.getValueType();
1044   unsigned NumElems = VT.getVectorNumElements();
1045   EVT EltVT = VT.getVectorElementType();
1046   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1047   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1048   SDLoc dl(Op);
1049   SmallVector<SDValue, 8> Ops(NumElems);
1050   for (unsigned i = 0; i < NumElems; ++i) {
1051     SDValue LHSElem = DAG.getNode(
1052         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1053         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1054     SDValue RHSElem = DAG.getNode(
1055         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1056         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1057     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1058                          TLI.getSetCCResultType(DAG.getDataLayout(),
1059                                                 *DAG.getContext(), TmpEltVT),
1060                          LHSElem, RHSElem, CC);
1061     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1062                            DAG.getConstant(APInt::getAllOnesValue
1063                                            (EltVT.getSizeInBits()), dl, EltVT),
1064                            DAG.getConstant(0, dl, EltVT));
1065   }
1066   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1067 }
1068 
1069 }
1070 
LegalizeVectors()1071 bool SelectionDAG::LegalizeVectors() {
1072   return VectorLegalizer(*this).Run();
1073 }
1074