1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33
34 namespace {
35 class VectorLegalizer {
36 SelectionDAG& DAG;
37 const TargetLowering &TLI;
38 bool Changed; // Keep track of whether anything changed
39
40 /// For nodes that are of legal width, and that have more than one use, this
41 /// map indicates what regularized operand to use. This allows us to avoid
42 /// legalizing the same thing more than once.
43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45 /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46 void AddLegalizedOperand(SDValue From, SDValue To) {
47 LegalizedNodes.insert(std::make_pair(From, To));
48 // If someone requests legalization of the new node, return itself.
49 if (From != To)
50 LegalizedNodes.insert(std::make_pair(To, To));
51 }
52
53 /// \brief Legalizes the given node.
54 SDValue LegalizeOp(SDValue Op);
55
56 /// \brief Assuming the node is legal, "legalize" the results.
57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58
59 /// \brief Implements unrolling a VSETCC.
60 SDValue UnrollVSETCC(SDValue Op);
61
62 /// \brief Implement expand-based legalization of vector operations.
63 ///
64 /// This is just a high-level routine to dispatch to specific code paths for
65 /// operations to legalize them.
66 SDValue Expand(SDValue Op);
67
68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69 /// FSUB isn't legal.
70 ///
71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74
75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76 SDValue ExpandSEXTINREG(SDValue Op);
77
78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79 ///
80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81 /// type. The contents of the bits in the extended part of each element are
82 /// undef.
83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84
85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86 ///
87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88 /// type, then shifts left and arithmetic shifts right to introduce a sign
89 /// extension.
90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91
92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93 ///
94 /// Shuffles the low lanes of the operand into place and blends zeros into
95 /// the remaining lanes, finally bitcasting to the proper type.
96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97
98 /// \brief Expand bswap of vectors into a shuffle if legal.
99 SDValue ExpandBSWAP(SDValue Op);
100
101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102 /// supported by the target.
103 SDValue ExpandVSELECT(SDValue Op);
104 SDValue ExpandSELECT(SDValue Op);
105 SDValue ExpandLoad(SDValue Op);
106 SDValue ExpandStore(SDValue Op);
107 SDValue ExpandFNEG(SDValue Op);
108 SDValue ExpandBITREVERSE(SDValue Op);
109 SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);
110
111 /// \brief Implements vector promotion.
112 ///
113 /// This is essentially just bitcasting the operands to a different type and
114 /// bitcasting the result back to the original type.
115 SDValue Promote(SDValue Op);
116
117 /// \brief Implements [SU]INT_TO_FP vector promotion.
118 ///
119 /// This is a [zs]ext of the input operand to the next size up.
120 SDValue PromoteINT_TO_FP(SDValue Op);
121
122 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
123 ///
124 /// It is promoted to the next size up integer type. The result is then
125 /// truncated back to the original type.
126 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
127
128 public:
129 /// \brief Begin legalizer the vector operations in the DAG.
130 bool Run();
VectorLegalizer(SelectionDAG & dag)131 VectorLegalizer(SelectionDAG& dag) :
132 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
133 };
134
Run()135 bool VectorLegalizer::Run() {
136 // Before we start legalizing vector nodes, check if there are any vectors.
137 bool HasVectors = false;
138 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
139 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
140 // Check if the values of the nodes contain vectors. We don't need to check
141 // the operands because we are going to check their values at some point.
142 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
143 J != E; ++J)
144 HasVectors |= J->isVector();
145
146 // If we found a vector node we can start the legalization.
147 if (HasVectors)
148 break;
149 }
150
151 // If this basic block has no vectors then no need to legalize vectors.
152 if (!HasVectors)
153 return false;
154
155 // The legalize process is inherently a bottom-up recursive process (users
156 // legalize their uses before themselves). Given infinite stack space, we
157 // could just start legalizing on the root and traverse the whole graph. In
158 // practice however, this causes us to run out of stack space on large basic
159 // blocks. To avoid this problem, compute an ordering of the nodes where each
160 // node is only legalized after all of its operands are legalized.
161 DAG.AssignTopologicalOrder();
162 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
163 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
164 LegalizeOp(SDValue(&*I, 0));
165
166 // Finally, it's possible the root changed. Get the new root.
167 SDValue OldRoot = DAG.getRoot();
168 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
169 DAG.setRoot(LegalizedNodes[OldRoot]);
170
171 LegalizedNodes.clear();
172
173 // Remove dead nodes now.
174 DAG.RemoveDeadNodes();
175
176 return Changed;
177 }
178
TranslateLegalizeResults(SDValue Op,SDValue Result)179 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
180 // Generic legalization: just pass the operand through.
181 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
182 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
183 return Result.getValue(Op.getResNo());
184 }
185
LegalizeOp(SDValue Op)186 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
187 // Note that LegalizeOp may be reentered even from single-use nodes, which
188 // means that we always must cache transformed nodes.
189 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
190 if (I != LegalizedNodes.end()) return I->second;
191
192 SDNode* Node = Op.getNode();
193
194 // Legalize the operands
195 SmallVector<SDValue, 8> Ops;
196 for (const SDValue &Op : Node->op_values())
197 Ops.push_back(LegalizeOp(Op));
198
199 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
200
201 bool HasVectorValue = false;
202 if (Op.getOpcode() == ISD::LOAD) {
203 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
204 ISD::LoadExtType ExtType = LD->getExtensionType();
205 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
206 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
207 LD->getMemoryVT())) {
208 default: llvm_unreachable("This action is not supported yet!");
209 case TargetLowering::Legal:
210 return TranslateLegalizeResults(Op, Result);
211 case TargetLowering::Custom:
212 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
213 if (Lowered == Result)
214 return TranslateLegalizeResults(Op, Lowered);
215 Changed = true;
216 if (Lowered->getNumValues() != Op->getNumValues()) {
217 // This expanded to something other than the load. Assume the
218 // lowering code took care of any chain values, and just handle the
219 // returned value.
220 assert(Result.getValue(1).use_empty() &&
221 "There are still live users of the old chain!");
222 return LegalizeOp(Lowered);
223 }
224 return TranslateLegalizeResults(Op, Lowered);
225 }
226 case TargetLowering::Expand:
227 Changed = true;
228 return LegalizeOp(ExpandLoad(Op));
229 }
230 } else if (Op.getOpcode() == ISD::STORE) {
231 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
232 EVT StVT = ST->getMemoryVT();
233 MVT ValVT = ST->getValue().getSimpleValueType();
234 if (StVT.isVector() && ST->isTruncatingStore())
235 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
236 default: llvm_unreachable("This action is not supported yet!");
237 case TargetLowering::Legal:
238 return TranslateLegalizeResults(Op, Result);
239 case TargetLowering::Custom: {
240 SDValue Lowered = TLI.LowerOperation(Result, DAG);
241 Changed = Lowered != Result;
242 return TranslateLegalizeResults(Op, Lowered);
243 }
244 case TargetLowering::Expand:
245 Changed = true;
246 return LegalizeOp(ExpandStore(Op));
247 }
248 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
249 HasVectorValue = true;
250
251 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
252 J != E;
253 ++J)
254 HasVectorValue |= J->isVector();
255 if (!HasVectorValue)
256 return TranslateLegalizeResults(Op, Result);
257
258 EVT QueryType;
259 switch (Op.getOpcode()) {
260 default:
261 return TranslateLegalizeResults(Op, Result);
262 case ISD::ADD:
263 case ISD::SUB:
264 case ISD::MUL:
265 case ISD::SDIV:
266 case ISD::UDIV:
267 case ISD::SREM:
268 case ISD::UREM:
269 case ISD::SDIVREM:
270 case ISD::UDIVREM:
271 case ISD::FADD:
272 case ISD::FSUB:
273 case ISD::FMUL:
274 case ISD::FDIV:
275 case ISD::FREM:
276 case ISD::AND:
277 case ISD::OR:
278 case ISD::XOR:
279 case ISD::SHL:
280 case ISD::SRA:
281 case ISD::SRL:
282 case ISD::ROTL:
283 case ISD::ROTR:
284 case ISD::BSWAP:
285 case ISD::BITREVERSE:
286 case ISD::CTLZ:
287 case ISD::CTTZ:
288 case ISD::CTLZ_ZERO_UNDEF:
289 case ISD::CTTZ_ZERO_UNDEF:
290 case ISD::CTPOP:
291 case ISD::SELECT:
292 case ISD::VSELECT:
293 case ISD::SELECT_CC:
294 case ISD::SETCC:
295 case ISD::ZERO_EXTEND:
296 case ISD::ANY_EXTEND:
297 case ISD::TRUNCATE:
298 case ISD::SIGN_EXTEND:
299 case ISD::FP_TO_SINT:
300 case ISD::FP_TO_UINT:
301 case ISD::FNEG:
302 case ISD::FABS:
303 case ISD::FMINNUM:
304 case ISD::FMAXNUM:
305 case ISD::FMINNAN:
306 case ISD::FMAXNAN:
307 case ISD::FCOPYSIGN:
308 case ISD::FSQRT:
309 case ISD::FSIN:
310 case ISD::FCOS:
311 case ISD::FPOWI:
312 case ISD::FPOW:
313 case ISD::FLOG:
314 case ISD::FLOG2:
315 case ISD::FLOG10:
316 case ISD::FEXP:
317 case ISD::FEXP2:
318 case ISD::FCEIL:
319 case ISD::FTRUNC:
320 case ISD::FRINT:
321 case ISD::FNEARBYINT:
322 case ISD::FROUND:
323 case ISD::FFLOOR:
324 case ISD::FP_ROUND:
325 case ISD::FP_EXTEND:
326 case ISD::FMA:
327 case ISD::SIGN_EXTEND_INREG:
328 case ISD::ANY_EXTEND_VECTOR_INREG:
329 case ISD::SIGN_EXTEND_VECTOR_INREG:
330 case ISD::ZERO_EXTEND_VECTOR_INREG:
331 case ISD::SMIN:
332 case ISD::SMAX:
333 case ISD::UMIN:
334 case ISD::UMAX:
335 QueryType = Node->getValueType(0);
336 break;
337 case ISD::FP_ROUND_INREG:
338 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
339 break;
340 case ISD::SINT_TO_FP:
341 case ISD::UINT_TO_FP:
342 QueryType = Node->getOperand(0).getValueType();
343 break;
344 case ISD::MSCATTER:
345 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
346 break;
347 case ISD::MSTORE:
348 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
349 break;
350 }
351
352 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
353 default: llvm_unreachable("This action is not supported yet!");
354 case TargetLowering::Promote:
355 Result = Promote(Op);
356 Changed = true;
357 break;
358 case TargetLowering::Legal:
359 break;
360 case TargetLowering::Custom: {
361 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
362 Result = Tmp1;
363 break;
364 }
365 // FALL THROUGH
366 }
367 case TargetLowering::Expand:
368 Result = Expand(Op);
369 }
370
371 // Make sure that the generated code is itself legal.
372 if (Result != Op) {
373 Result = LegalizeOp(Result);
374 Changed = true;
375 }
376
377 // Note that LegalizeOp may be reentered even from single-use nodes, which
378 // means that we always must cache transformed nodes.
379 AddLegalizedOperand(Op, Result);
380 return Result;
381 }
382
Promote(SDValue Op)383 SDValue VectorLegalizer::Promote(SDValue Op) {
384 // For a few operations there is a specific concept for promotion based on
385 // the operand's type.
386 switch (Op.getOpcode()) {
387 case ISD::SINT_TO_FP:
388 case ISD::UINT_TO_FP:
389 // "Promote" the operation by extending the operand.
390 return PromoteINT_TO_FP(Op);
391 case ISD::FP_TO_UINT:
392 case ISD::FP_TO_SINT:
393 // Promote the operation by extending the operand.
394 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
395 }
396
397 // There are currently two cases of vector promotion:
398 // 1) Bitcasting a vector of integers to a different type to a vector of the
399 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
400 // 2) Extending a vector of floats to a vector of the same number of larger
401 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
402 MVT VT = Op.getSimpleValueType();
403 assert(Op.getNode()->getNumValues() == 1 &&
404 "Can't promote a vector with multiple results!");
405 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
406 SDLoc dl(Op);
407 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
408
409 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
410 if (Op.getOperand(j).getValueType().isVector())
411 if (Op.getOperand(j)
412 .getValueType()
413 .getVectorElementType()
414 .isFloatingPoint() &&
415 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
416 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
417 else
418 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
419 else
420 Operands[j] = Op.getOperand(j);
421 }
422
423 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
424 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
425 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
426 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
427 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
428 else
429 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
430 }
431
PromoteINT_TO_FP(SDValue Op)432 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
433 // INT_TO_FP operations may require the input operand be promoted even
434 // when the type is otherwise legal.
435 EVT VT = Op.getOperand(0).getValueType();
436 assert(Op.getNode()->getNumValues() == 1 &&
437 "Can't promote a vector with multiple results!");
438
439 // Normal getTypeToPromoteTo() doesn't work here, as that will promote
440 // by widening the vector w/ the same element width and twice the number
441 // of elements. We want the other way around, the same number of elements,
442 // each twice the width.
443 //
444 // Increase the bitwidth of the element to the next pow-of-two
445 // (which is greater than 8 bits).
446
447 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
448 assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
449 SDLoc dl(Op);
450 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
451
452 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
453 ISD::SIGN_EXTEND;
454 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
455 if (Op.getOperand(j).getValueType().isVector())
456 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
457 else
458 Operands[j] = Op.getOperand(j);
459 }
460
461 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
462 }
463
464 // For FP_TO_INT we promote the result type to a vector type with wider
465 // elements and then truncate the result. This is different from the default
466 // PromoteVector which uses bitcast to promote thus assumning that the
467 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)468 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
469 assert(Op.getNode()->getNumValues() == 1 &&
470 "Can't promote a vector with multiple results!");
471 EVT VT = Op.getValueType();
472
473 EVT NewVT;
474 unsigned NewOpc;
475 while (1) {
476 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
477 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
478 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
479 NewOpc = ISD::FP_TO_SINT;
480 break;
481 }
482 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
483 NewOpc = ISD::FP_TO_UINT;
484 break;
485 }
486 }
487
488 SDLoc loc(Op);
489 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
490 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
491 }
492
493
ExpandLoad(SDValue Op)494 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
495 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
496
497 EVT SrcVT = LD->getMemoryVT();
498 EVT SrcEltVT = SrcVT.getScalarType();
499 unsigned NumElem = SrcVT.getVectorNumElements();
500
501
502 SDValue NewChain;
503 SDValue Value;
504 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
505 SDLoc dl(Op);
506
507 SmallVector<SDValue, 8> Vals;
508 SmallVector<SDValue, 8> LoadChains;
509
510 EVT DstEltVT = LD->getValueType(0).getScalarType();
511 SDValue Chain = LD->getChain();
512 SDValue BasePTR = LD->getBasePtr();
513 ISD::LoadExtType ExtType = LD->getExtensionType();
514
515 // When elements in a vector is not byte-addressable, we cannot directly
516 // load each element by advancing pointer, which could only address bytes.
517 // Instead, we load all significant words, mask bits off, and concatenate
518 // them to form each element. Finally, they are extended to destination
519 // scalar type to build the destination vector.
520 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
521
522 assert(WideVT.isRound() &&
523 "Could not handle the sophisticated case when the widest integer is"
524 " not power of 2.");
525 assert(WideVT.bitsGE(SrcEltVT) &&
526 "Type is not legalized?");
527
528 unsigned WideBytes = WideVT.getStoreSize();
529 unsigned Offset = 0;
530 unsigned RemainingBytes = SrcVT.getStoreSize();
531 SmallVector<SDValue, 8> LoadVals;
532
533 while (RemainingBytes > 0) {
534 SDValue ScalarLoad;
535 unsigned LoadBytes = WideBytes;
536
537 if (RemainingBytes >= LoadBytes) {
538 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
539 LD->getPointerInfo().getWithOffset(Offset),
540 LD->isVolatile(), LD->isNonTemporal(),
541 LD->isInvariant(),
542 MinAlign(LD->getAlignment(), Offset),
543 LD->getAAInfo());
544 } else {
545 EVT LoadVT = WideVT;
546 while (RemainingBytes < LoadBytes) {
547 LoadBytes >>= 1; // Reduce the load size by half.
548 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
549 }
550 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
551 LD->getPointerInfo().getWithOffset(Offset),
552 LoadVT, LD->isVolatile(),
553 LD->isNonTemporal(), LD->isInvariant(),
554 MinAlign(LD->getAlignment(), Offset),
555 LD->getAAInfo());
556 }
557
558 RemainingBytes -= LoadBytes;
559 Offset += LoadBytes;
560 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
561 DAG.getConstant(LoadBytes, dl,
562 BasePTR.getValueType()));
563
564 LoadVals.push_back(ScalarLoad.getValue(0));
565 LoadChains.push_back(ScalarLoad.getValue(1));
566 }
567
568 // Extract bits, pack and extend/trunc them into destination type.
569 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
570 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
571
572 unsigned BitOffset = 0;
573 unsigned WideIdx = 0;
574 unsigned WideBits = WideVT.getSizeInBits();
575
576 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
577 SDValue Lo, Hi, ShAmt;
578
579 if (BitOffset < WideBits) {
580 ShAmt = DAG.getConstant(
581 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
582 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
583 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
584 }
585
586 BitOffset += SrcEltBits;
587 if (BitOffset >= WideBits) {
588 WideIdx++;
589 BitOffset -= WideBits;
590 if (BitOffset > 0) {
591 ShAmt = DAG.getConstant(
592 SrcEltBits - BitOffset, dl,
593 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
594 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
595 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
596 }
597 }
598
599 if (Hi.getNode())
600 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
601
602 switch (ExtType) {
603 default: llvm_unreachable("Unknown extended-load op!");
604 case ISD::EXTLOAD:
605 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
606 break;
607 case ISD::ZEXTLOAD:
608 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
609 break;
610 case ISD::SEXTLOAD:
611 ShAmt =
612 DAG.getConstant(WideBits - SrcEltBits, dl,
613 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
614 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
615 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
616 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
617 break;
618 }
619 Vals.push_back(Lo);
620 }
621
622 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
623 Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
624 Op.getNode()->getValueType(0), Vals);
625 } else {
626 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
627
628 NewChain = Scalarized.getValue(1);
629 Value = Scalarized.getValue(0);
630 }
631
632 AddLegalizedOperand(Op.getValue(0), Value);
633 AddLegalizedOperand(Op.getValue(1), NewChain);
634
635 return (Op.getResNo() ? NewChain : Value);
636 }
637
ExpandStore(SDValue Op)638 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
639 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
640
641 EVT StVT = ST->getMemoryVT();
642 EVT MemSclVT = StVT.getScalarType();
643 unsigned ScalarSize = MemSclVT.getSizeInBits();
644
645 // Round odd types to the next pow of two.
646 if (!isPowerOf2_32(ScalarSize)) {
647 // FIXME: This is completely broken and inconsistent with ExpandLoad
648 // handling.
649
650 // For sub-byte element sizes, this ends up with 0 stride between elements,
651 // so the same element just gets re-written to the same location. There seem
652 // to be tests explicitly testing for this broken behavior though. tests
653 // for this broken behavior.
654
655 LLVMContext &Ctx = *DAG.getContext();
656
657 EVT NewMemVT
658 = EVT::getVectorVT(Ctx,
659 MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)),
660 StVT.getVectorNumElements());
661
662 SDValue NewVectorStore
663 = DAG.getTruncStore(ST->getChain(), SDLoc(Op), ST->getValue(),
664 ST->getBasePtr(),
665 ST->getPointerInfo(), NewMemVT,
666 ST->isVolatile(), ST->isNonTemporal(),
667 ST->getAlignment(),
668 ST->getAAInfo());
669 ST = cast<StoreSDNode>(NewVectorStore.getNode());
670 }
671
672 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
673 AddLegalizedOperand(Op, TF);
674 return TF;
675 }
676
Expand(SDValue Op)677 SDValue VectorLegalizer::Expand(SDValue Op) {
678 switch (Op->getOpcode()) {
679 case ISD::SIGN_EXTEND_INREG:
680 return ExpandSEXTINREG(Op);
681 case ISD::ANY_EXTEND_VECTOR_INREG:
682 return ExpandANY_EXTEND_VECTOR_INREG(Op);
683 case ISD::SIGN_EXTEND_VECTOR_INREG:
684 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
685 case ISD::ZERO_EXTEND_VECTOR_INREG:
686 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
687 case ISD::BSWAP:
688 return ExpandBSWAP(Op);
689 case ISD::VSELECT:
690 return ExpandVSELECT(Op);
691 case ISD::SELECT:
692 return ExpandSELECT(Op);
693 case ISD::UINT_TO_FP:
694 return ExpandUINT_TO_FLOAT(Op);
695 case ISD::FNEG:
696 return ExpandFNEG(Op);
697 case ISD::SETCC:
698 return UnrollVSETCC(Op);
699 case ISD::BITREVERSE:
700 return ExpandBITREVERSE(Op);
701 case ISD::CTLZ_ZERO_UNDEF:
702 case ISD::CTTZ_ZERO_UNDEF:
703 return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
704 default:
705 return DAG.UnrollVectorOp(Op.getNode());
706 }
707 }
708
ExpandSELECT(SDValue Op)709 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
710 // Lower a select instruction where the condition is a scalar and the
711 // operands are vectors. Lower this select to VSELECT and implement it
712 // using XOR AND OR. The selector bit is broadcasted.
713 EVT VT = Op.getValueType();
714 SDLoc DL(Op);
715
716 SDValue Mask = Op.getOperand(0);
717 SDValue Op1 = Op.getOperand(1);
718 SDValue Op2 = Op.getOperand(2);
719
720 assert(VT.isVector() && !Mask.getValueType().isVector()
721 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
722
723 unsigned NumElem = VT.getVectorNumElements();
724
725 // If we can't even use the basic vector operations of
726 // AND,OR,XOR, we will have to scalarize the op.
727 // Notice that the operation may be 'promoted' which means that it is
728 // 'bitcasted' to another type which is handled.
729 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
730 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
731 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
732 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
733 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
734 return DAG.UnrollVectorOp(Op.getNode());
735
736 // Generate a mask operand.
737 EVT MaskTy = VT.changeVectorElementTypeToInteger();
738
739 // What is the size of each element in the vector mask.
740 EVT BitTy = MaskTy.getScalarType();
741
742 Mask = DAG.getSelect(DL, BitTy, Mask,
743 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
744 BitTy),
745 DAG.getConstant(0, DL, BitTy));
746
747 // Broadcast the mask so that the entire vector is all-one or all zero.
748 SmallVector<SDValue, 8> Ops(NumElem, Mask);
749 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
750
751 // Bitcast the operands to be the same type as the mask.
752 // This is needed when we select between FP types because
753 // the mask is a vector of integers.
754 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
755 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
756
757 SDValue AllOnes = DAG.getConstant(
758 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
759 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
760
761 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
762 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
763 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
764 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
765 }
766
ExpandSEXTINREG(SDValue Op)767 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
768 EVT VT = Op.getValueType();
769
770 // Make sure that the SRA and SHL instructions are available.
771 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
772 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
773 return DAG.UnrollVectorOp(Op.getNode());
774
775 SDLoc DL(Op);
776 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
777
778 unsigned BW = VT.getScalarType().getSizeInBits();
779 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
780 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
781
782 Op = Op.getOperand(0);
783 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
784 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
785 }
786
787 // Generically expand a vector anyext in register to a shuffle of the relevant
788 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)789 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
790 SDLoc DL(Op);
791 EVT VT = Op.getValueType();
792 int NumElements = VT.getVectorNumElements();
793 SDValue Src = Op.getOperand(0);
794 EVT SrcVT = Src.getValueType();
795 int NumSrcElements = SrcVT.getVectorNumElements();
796
797 // Build a base mask of undef shuffles.
798 SmallVector<int, 16> ShuffleMask;
799 ShuffleMask.resize(NumSrcElements, -1);
800
801 // Place the extended lanes into the correct locations.
802 int ExtLaneScale = NumSrcElements / NumElements;
803 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
804 for (int i = 0; i < NumElements; ++i)
805 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
806
807 return DAG.getNode(
808 ISD::BITCAST, DL, VT,
809 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
810 }
811
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)812 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
813 SDLoc DL(Op);
814 EVT VT = Op.getValueType();
815 SDValue Src = Op.getOperand(0);
816 EVT SrcVT = Src.getValueType();
817
818 // First build an any-extend node which can be legalized above when we
819 // recurse through it.
820 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
821
822 // Now we need sign extend. Do this by shifting the elements. Even if these
823 // aren't legal operations, they have a better chance of being legalized
824 // without full scalarization than the sign extension does.
825 unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
826 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
827 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
828 return DAG.getNode(ISD::SRA, DL, VT,
829 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
830 ShiftAmount);
831 }
832
833 // Generically expand a vector zext in register to a shuffle of the relevant
834 // lanes into the appropriate locations, a blend of zero into the high bits,
835 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)836 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
837 SDLoc DL(Op);
838 EVT VT = Op.getValueType();
839 int NumElements = VT.getVectorNumElements();
840 SDValue Src = Op.getOperand(0);
841 EVT SrcVT = Src.getValueType();
842 int NumSrcElements = SrcVT.getVectorNumElements();
843
844 // Build up a zero vector to blend into this one.
845 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
846
847 // Shuffle the incoming lanes into the correct position, and pull all other
848 // lanes from the zero vector.
849 SmallVector<int, 16> ShuffleMask;
850 ShuffleMask.reserve(NumSrcElements);
851 for (int i = 0; i < NumSrcElements; ++i)
852 ShuffleMask.push_back(i);
853
854 int ExtLaneScale = NumSrcElements / NumElements;
855 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
856 for (int i = 0; i < NumElements; ++i)
857 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
858
859 return DAG.getNode(ISD::BITCAST, DL, VT,
860 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
861 }
862
createBSWAPShuffleMask(EVT VT,SmallVectorImpl<int> & ShuffleMask)863 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
864 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
865 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
866 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
867 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
868 }
869
ExpandBSWAP(SDValue Op)870 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
871 EVT VT = Op.getValueType();
872
873 // Generate a byte wise shuffle mask for the BSWAP.
874 SmallVector<int, 16> ShuffleMask;
875 createBSWAPShuffleMask(VT, ShuffleMask);
876 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
877
878 // Only emit a shuffle if the mask is legal.
879 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
880 return DAG.UnrollVectorOp(Op.getNode());
881
882 SDLoc DL(Op);
883 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
884 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
885 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
886 }
887
ExpandBITREVERSE(SDValue Op)888 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
889 EVT VT = Op.getValueType();
890
891 // If we have the scalar operation, it's probably cheaper to unroll it.
892 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
893 return DAG.UnrollVectorOp(Op.getNode());
894
895 // If the vector element width is a whole number of bytes, test if its legal
896 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
897 // vector. This greatly reduces the number of bit shifts necessary.
898 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
899 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
900 SmallVector<int, 16> BSWAPMask;
901 createBSWAPShuffleMask(VT, BSWAPMask);
902
903 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
904 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
905 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
906 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
907 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
908 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
909 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
910 SDLoc DL(Op);
911 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
912 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
913 BSWAPMask);
914 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
915 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
916 }
917 }
918
919 // If we have the appropriate vector bit operations, it is better to use them
920 // than unrolling and expanding each component.
921 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
922 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
923 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
924 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
925 return DAG.UnrollVectorOp(Op.getNode());
926
927 // Let LegalizeDAG handle this later.
928 return Op;
929 }
930
ExpandVSELECT(SDValue Op)931 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
932 // Implement VSELECT in terms of XOR, AND, OR
933 // on platforms which do not support blend natively.
934 SDLoc DL(Op);
935
936 SDValue Mask = Op.getOperand(0);
937 SDValue Op1 = Op.getOperand(1);
938 SDValue Op2 = Op.getOperand(2);
939
940 EVT VT = Mask.getValueType();
941
942 // If we can't even use the basic vector operations of
943 // AND,OR,XOR, we will have to scalarize the op.
944 // Notice that the operation may be 'promoted' which means that it is
945 // 'bitcasted' to another type which is handled.
946 // This operation also isn't safe with AND, OR, XOR when the boolean
947 // type is 0/1 as we need an all ones vector constant to mask with.
948 // FIXME: Sign extend 1 to all ones if thats legal on the target.
949 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
950 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
951 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
952 TLI.getBooleanContents(Op1.getValueType()) !=
953 TargetLowering::ZeroOrNegativeOneBooleanContent)
954 return DAG.UnrollVectorOp(Op.getNode());
955
956 // If the mask and the type are different sizes, unroll the vector op. This
957 // can occur when getSetCCResultType returns something that is different in
958 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
959 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
960 return DAG.UnrollVectorOp(Op.getNode());
961
962 // Bitcast the operands to be the same type as the mask.
963 // This is needed when we select between FP types because
964 // the mask is a vector of integers.
965 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
966 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
967
968 SDValue AllOnes = DAG.getConstant(
969 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
970 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
971
972 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
973 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
974 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
975 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
976 }
977
ExpandUINT_TO_FLOAT(SDValue Op)978 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
979 EVT VT = Op.getOperand(0).getValueType();
980 SDLoc DL(Op);
981
982 // Make sure that the SINT_TO_FP and SRL instructions are available.
983 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
984 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
985 return DAG.UnrollVectorOp(Op.getNode());
986
987 EVT SVT = VT.getScalarType();
988 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
989 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
990
991 unsigned BW = SVT.getSizeInBits();
992 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
993
994 // Constants to clear the upper part of the word.
995 // Notice that we can also use SHL+SHR, but using a constant is slightly
996 // faster on x86.
997 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
998 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
999
1000 // Two to the power of half-word-size.
1001 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
1002
1003 // Clear upper part of LO, lower HI
1004 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1005 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1006
1007 // Convert hi and lo to floats
1008 // Convert the hi part back to the upper values
1009 // TODO: Can any fast-math-flags be set on these nodes?
1010 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1011 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1012 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1013
1014 // Add the two halves
1015 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1016 }
1017
1018
ExpandFNEG(SDValue Op)1019 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1020 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1021 SDLoc DL(Op);
1022 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1023 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1024 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1025 Zero, Op.getOperand(0));
1026 }
1027 return DAG.UnrollVectorOp(Op.getNode());
1028 }
1029
ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op)1030 SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
1031 // If the non-ZERO_UNDEF version is supported we can use that instead.
1032 unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
1033 if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) {
1034 SDLoc DL(Op);
1035 return DAG.getNode(Opc, DL, Op.getValueType(), Op.getOperand(0));
1036 }
1037
1038 // Otherwise go ahead and unroll.
1039 return DAG.UnrollVectorOp(Op.getNode());
1040 }
1041
UnrollVSETCC(SDValue Op)1042 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1043 EVT VT = Op.getValueType();
1044 unsigned NumElems = VT.getVectorNumElements();
1045 EVT EltVT = VT.getVectorElementType();
1046 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1047 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1048 SDLoc dl(Op);
1049 SmallVector<SDValue, 8> Ops(NumElems);
1050 for (unsigned i = 0; i < NumElems; ++i) {
1051 SDValue LHSElem = DAG.getNode(
1052 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1053 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1054 SDValue RHSElem = DAG.getNode(
1055 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1056 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1057 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1058 TLI.getSetCCResultType(DAG.getDataLayout(),
1059 *DAG.getContext(), TmpEltVT),
1060 LHSElem, RHSElem, CC);
1061 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1062 DAG.getConstant(APInt::getAllOnesValue
1063 (EltVT.getSizeInBits()), dl, EltVT),
1064 DAG.getConstant(0, dl, EltVT));
1065 }
1066 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1067 }
1068
1069 }
1070
LegalizeVectors()1071 bool SelectionDAG::LegalizeVectors() {
1072 return VectorLegalizer(*this).Run();
1073 }
1074