1 //===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/Optional.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/Support/Casting.h"
17 #include "llvm/Support/DataTypes.h"
18 #include "llvm/Support/Dwarf.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <string>
23 #include <utility>
24 #include <vector>
25
26 using namespace llvm;
27 using namespace dwarf;
28
29
30 /// \brief Abstract frame entry defining the common interface concrete
31 /// entries implement.
32 class llvm::FrameEntry {
33 public:
34 enum FrameKind {FK_CIE, FK_FDE};
FrameEntry(FrameKind K,uint64_t Offset,uint64_t Length)35 FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length)
36 : Kind(K), Offset(Offset), Length(Length) {}
37
~FrameEntry()38 virtual ~FrameEntry() {
39 }
40
getKind() const41 FrameKind getKind() const { return Kind; }
getOffset() const42 virtual uint64_t getOffset() const { return Offset; }
43
44 /// \brief Parse and store a sequence of CFI instructions from Data,
45 /// starting at *Offset and ending at EndOffset. If everything
46 /// goes well, *Offset should be equal to EndOffset when this method
47 /// returns. Otherwise, an error occurred.
48 virtual void parseInstructions(DataExtractor Data, uint32_t *Offset,
49 uint32_t EndOffset);
50
51 /// \brief Dump the entry header to the given output stream.
52 virtual void dumpHeader(raw_ostream &OS) const = 0;
53
54 /// \brief Dump the entry's instructions to the given output stream.
55 virtual void dumpInstructions(raw_ostream &OS) const;
56
57 protected:
58 const FrameKind Kind;
59
60 /// \brief Offset of this entry in the section.
61 uint64_t Offset;
62
63 /// \brief Entry length as specified in DWARF.
64 uint64_t Length;
65
66 /// An entry may contain CFI instructions. An instruction consists of an
67 /// opcode and an optional sequence of operands.
68 typedef std::vector<uint64_t> Operands;
69 struct Instruction {
Instructionllvm::FrameEntry::Instruction70 Instruction(uint8_t Opcode)
71 : Opcode(Opcode)
72 {}
73
74 uint8_t Opcode;
75 Operands Ops;
76 };
77
78 std::vector<Instruction> Instructions;
79
80 /// Convenience methods to add a new instruction with the given opcode and
81 /// operands to the Instructions vector.
addInstruction(uint8_t Opcode)82 void addInstruction(uint8_t Opcode) {
83 Instructions.push_back(Instruction(Opcode));
84 }
85
addInstruction(uint8_t Opcode,uint64_t Operand1)86 void addInstruction(uint8_t Opcode, uint64_t Operand1) {
87 Instructions.push_back(Instruction(Opcode));
88 Instructions.back().Ops.push_back(Operand1);
89 }
90
addInstruction(uint8_t Opcode,uint64_t Operand1,uint64_t Operand2)91 void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
92 Instructions.push_back(Instruction(Opcode));
93 Instructions.back().Ops.push_back(Operand1);
94 Instructions.back().Ops.push_back(Operand2);
95 }
96 };
97
98
99 // See DWARF standard v3, section 7.23
100 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
101 const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
102
parseInstructions(DataExtractor Data,uint32_t * Offset,uint32_t EndOffset)103 void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset,
104 uint32_t EndOffset) {
105 while (*Offset < EndOffset) {
106 uint8_t Opcode = Data.getU8(Offset);
107 // Some instructions have a primary opcode encoded in the top bits.
108 uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
109
110 if (Primary) {
111 // If it's a primary opcode, the first operand is encoded in the bottom
112 // bits of the opcode itself.
113 uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
114 switch (Primary) {
115 default: llvm_unreachable("Impossible primary CFI opcode");
116 case DW_CFA_advance_loc:
117 case DW_CFA_restore:
118 addInstruction(Primary, Op1);
119 break;
120 case DW_CFA_offset:
121 addInstruction(Primary, Op1, Data.getULEB128(Offset));
122 break;
123 }
124 } else {
125 // Extended opcode - its value is Opcode itself.
126 switch (Opcode) {
127 default: llvm_unreachable("Invalid extended CFI opcode");
128 case DW_CFA_nop:
129 case DW_CFA_remember_state:
130 case DW_CFA_restore_state:
131 case DW_CFA_GNU_window_save:
132 // No operands
133 addInstruction(Opcode);
134 break;
135 case DW_CFA_set_loc:
136 // Operands: Address
137 addInstruction(Opcode, Data.getAddress(Offset));
138 break;
139 case DW_CFA_advance_loc1:
140 // Operands: 1-byte delta
141 addInstruction(Opcode, Data.getU8(Offset));
142 break;
143 case DW_CFA_advance_loc2:
144 // Operands: 2-byte delta
145 addInstruction(Opcode, Data.getU16(Offset));
146 break;
147 case DW_CFA_advance_loc4:
148 // Operands: 4-byte delta
149 addInstruction(Opcode, Data.getU32(Offset));
150 break;
151 case DW_CFA_restore_extended:
152 case DW_CFA_undefined:
153 case DW_CFA_same_value:
154 case DW_CFA_def_cfa_register:
155 case DW_CFA_def_cfa_offset:
156 // Operands: ULEB128
157 addInstruction(Opcode, Data.getULEB128(Offset));
158 break;
159 case DW_CFA_def_cfa_offset_sf:
160 // Operands: SLEB128
161 addInstruction(Opcode, Data.getSLEB128(Offset));
162 break;
163 case DW_CFA_offset_extended:
164 case DW_CFA_register:
165 case DW_CFA_def_cfa:
166 case DW_CFA_val_offset: {
167 // Operands: ULEB128, ULEB128
168 // Note: We can not embed getULEB128 directly into function
169 // argument list. getULEB128 changes Offset and order of evaluation
170 // for arguments is unspecified.
171 auto op1 = Data.getULEB128(Offset);
172 auto op2 = Data.getULEB128(Offset);
173 addInstruction(Opcode, op1, op2);
174 break;
175 }
176 case DW_CFA_offset_extended_sf:
177 case DW_CFA_def_cfa_sf:
178 case DW_CFA_val_offset_sf: {
179 // Operands: ULEB128, SLEB128
180 // Note: see comment for the previous case
181 auto op1 = Data.getULEB128(Offset);
182 auto op2 = (uint64_t)Data.getSLEB128(Offset);
183 addInstruction(Opcode, op1, op2);
184 break;
185 }
186 case DW_CFA_def_cfa_expression:
187 case DW_CFA_expression:
188 case DW_CFA_val_expression:
189 // TODO: implement this
190 report_fatal_error("Values with expressions not implemented yet!");
191 }
192 }
193 }
194 }
195
196 namespace {
197 /// \brief DWARF Common Information Entry (CIE)
198 class CIE : public FrameEntry {
199 public:
200 // CIEs (and FDEs) are simply container classes, so the only sensible way to
201 // create them is by providing the full parsed contents in the constructor.
CIE(uint64_t Offset,uint64_t Length,uint8_t Version,SmallString<8> Augmentation,uint8_t AddressSize,uint8_t SegmentDescriptorSize,uint64_t CodeAlignmentFactor,int64_t DataAlignmentFactor,uint64_t ReturnAddressRegister,SmallString<8> AugmentationData,uint32_t FDEPointerEncoding,uint32_t LSDAPointerEncoding)202 CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
203 SmallString<8> Augmentation, uint8_t AddressSize,
204 uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
205 int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
206 SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
207 uint32_t LSDAPointerEncoding)
208 : FrameEntry(FK_CIE, Offset, Length), Version(Version),
209 Augmentation(std::move(Augmentation)), AddressSize(AddressSize),
210 SegmentDescriptorSize(SegmentDescriptorSize),
211 CodeAlignmentFactor(CodeAlignmentFactor),
212 DataAlignmentFactor(DataAlignmentFactor),
213 ReturnAddressRegister(ReturnAddressRegister),
214 AugmentationData(std::move(AugmentationData)),
215 FDEPointerEncoding(FDEPointerEncoding),
216 LSDAPointerEncoding(LSDAPointerEncoding) {}
217
~CIE()218 ~CIE() override {}
219
getAugmentationString() const220 StringRef getAugmentationString() const { return Augmentation; }
getCodeAlignmentFactor() const221 uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
getDataAlignmentFactor() const222 int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
getFDEPointerEncoding() const223 uint32_t getFDEPointerEncoding() const {
224 return FDEPointerEncoding;
225 }
getLSDAPointerEncoding() const226 uint32_t getLSDAPointerEncoding() const {
227 return LSDAPointerEncoding;
228 }
229
dumpHeader(raw_ostream & OS) const230 void dumpHeader(raw_ostream &OS) const override {
231 OS << format("%08x %08x %08x CIE",
232 (uint32_t)Offset, (uint32_t)Length, DW_CIE_ID)
233 << "\n";
234 OS << format(" Version: %d\n", Version);
235 OS << " Augmentation: \"" << Augmentation << "\"\n";
236 if (Version >= 4) {
237 OS << format(" Address size: %u\n",
238 (uint32_t)AddressSize);
239 OS << format(" Segment desc size: %u\n",
240 (uint32_t)SegmentDescriptorSize);
241 }
242 OS << format(" Code alignment factor: %u\n",
243 (uint32_t)CodeAlignmentFactor);
244 OS << format(" Data alignment factor: %d\n",
245 (int32_t)DataAlignmentFactor);
246 OS << format(" Return address column: %d\n",
247 (int32_t)ReturnAddressRegister);
248 if (!AugmentationData.empty()) {
249 OS << " Augmentation data: ";
250 for (uint8_t Byte : AugmentationData)
251 OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
252 OS << "\n";
253 }
254 OS << "\n";
255 }
256
classof(const FrameEntry * FE)257 static bool classof(const FrameEntry *FE) {
258 return FE->getKind() == FK_CIE;
259 }
260
261 private:
262 /// The following fields are defined in section 6.4.1 of the DWARF standard v4
263 uint8_t Version;
264 SmallString<8> Augmentation;
265 uint8_t AddressSize;
266 uint8_t SegmentDescriptorSize;
267 uint64_t CodeAlignmentFactor;
268 int64_t DataAlignmentFactor;
269 uint64_t ReturnAddressRegister;
270
271 // The following are used when the CIE represents an EH frame entry.
272 SmallString<8> AugmentationData;
273 uint32_t FDEPointerEncoding;
274 uint32_t LSDAPointerEncoding;
275 };
276
277
278 /// \brief DWARF Frame Description Entry (FDE)
279 class FDE : public FrameEntry {
280 public:
281 // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
282 // an offset to the CIE (provided by parsing the FDE header). The CIE itself
283 // is obtained lazily once it's actually required.
FDE(uint64_t Offset,uint64_t Length,int64_t LinkedCIEOffset,uint64_t InitialLocation,uint64_t AddressRange,CIE * Cie)284 FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
285 uint64_t InitialLocation, uint64_t AddressRange,
286 CIE *Cie)
287 : FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset),
288 InitialLocation(InitialLocation), AddressRange(AddressRange),
289 LinkedCIE(Cie) {}
290
~FDE()291 ~FDE() override {}
292
getLinkedCIE() const293 CIE *getLinkedCIE() const { return LinkedCIE; }
294
dumpHeader(raw_ostream & OS) const295 void dumpHeader(raw_ostream &OS) const override {
296 OS << format("%08x %08x %08x FDE ",
297 (uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset);
298 OS << format("cie=%08x pc=%08x...%08x\n",
299 (int32_t)LinkedCIEOffset,
300 (uint32_t)InitialLocation,
301 (uint32_t)InitialLocation + (uint32_t)AddressRange);
302 }
303
classof(const FrameEntry * FE)304 static bool classof(const FrameEntry *FE) {
305 return FE->getKind() == FK_FDE;
306 }
307
308 private:
309 /// The following fields are defined in section 6.4.1 of the DWARF standard v3
310 uint64_t LinkedCIEOffset;
311 uint64_t InitialLocation;
312 uint64_t AddressRange;
313 CIE *LinkedCIE;
314 };
315
316 /// \brief Types of operands to CF instructions.
317 enum OperandType {
318 OT_Unset,
319 OT_None,
320 OT_Address,
321 OT_Offset,
322 OT_FactoredCodeOffset,
323 OT_SignedFactDataOffset,
324 OT_UnsignedFactDataOffset,
325 OT_Register,
326 OT_Expression
327 };
328
329 } // end anonymous namespace
330
331 /// \brief Initialize the array describing the types of operands.
getOperandTypes()332 static ArrayRef<OperandType[2]> getOperandTypes() {
333 static OperandType OpTypes[DW_CFA_restore+1][2];
334
335 #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
336 do { \
337 OpTypes[OP][0] = OPTYPE0; \
338 OpTypes[OP][1] = OPTYPE1; \
339 } while (0)
340 #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
341 #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
342
343 DECLARE_OP1(DW_CFA_set_loc, OT_Address);
344 DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
345 DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
346 DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
347 DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
348 DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
349 DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
350 DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
351 DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
352 DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
353 DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
354 DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
355 DECLARE_OP1(DW_CFA_undefined, OT_Register);
356 DECLARE_OP1(DW_CFA_same_value, OT_Register);
357 DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
358 DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
359 DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
360 DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
361 DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
362 DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
363 DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
364 DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
365 DECLARE_OP1(DW_CFA_restore, OT_Register);
366 DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
367 DECLARE_OP0(DW_CFA_remember_state);
368 DECLARE_OP0(DW_CFA_restore_state);
369 DECLARE_OP0(DW_CFA_GNU_window_save);
370 DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
371 DECLARE_OP0(DW_CFA_nop);
372
373 #undef DECLARE_OP0
374 #undef DECLARE_OP1
375 #undef DECLARE_OP2
376 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
377 }
378
379 static ArrayRef<OperandType[2]> OpTypes = getOperandTypes();
380
381 /// \brief Print \p Opcode's operand number \p OperandIdx which has
382 /// value \p Operand.
printOperand(raw_ostream & OS,uint8_t Opcode,unsigned OperandIdx,uint64_t Operand,uint64_t CodeAlignmentFactor,int64_t DataAlignmentFactor)383 static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx,
384 uint64_t Operand, uint64_t CodeAlignmentFactor,
385 int64_t DataAlignmentFactor) {
386 assert(OperandIdx < 2);
387 OperandType Type = OpTypes[Opcode][OperandIdx];
388
389 switch (Type) {
390 case OT_Unset:
391 OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
392 if (const char *OpcodeName = CallFrameString(Opcode))
393 OS << " " << OpcodeName;
394 else
395 OS << format(" Opcode %x", Opcode);
396 break;
397 case OT_None:
398 break;
399 case OT_Address:
400 OS << format(" %" PRIx64, Operand);
401 break;
402 case OT_Offset:
403 // The offsets are all encoded in a unsigned form, but in practice
404 // consumers use them signed. It's most certainly legacy due to
405 // the lack of signed variants in the first Dwarf standards.
406 OS << format(" %+" PRId64, int64_t(Operand));
407 break;
408 case OT_FactoredCodeOffset: // Always Unsigned
409 if (CodeAlignmentFactor)
410 OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
411 else
412 OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
413 break;
414 case OT_SignedFactDataOffset:
415 if (DataAlignmentFactor)
416 OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
417 else
418 OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
419 break;
420 case OT_UnsignedFactDataOffset:
421 if (DataAlignmentFactor)
422 OS << format(" %" PRId64, Operand * DataAlignmentFactor);
423 else
424 OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
425 break;
426 case OT_Register:
427 OS << format(" reg%" PRId64, Operand);
428 break;
429 case OT_Expression:
430 OS << " expression";
431 break;
432 }
433 }
434
dumpInstructions(raw_ostream & OS) const435 void FrameEntry::dumpInstructions(raw_ostream &OS) const {
436 uint64_t CodeAlignmentFactor = 0;
437 int64_t DataAlignmentFactor = 0;
438 const CIE *Cie = dyn_cast<CIE>(this);
439
440 if (!Cie)
441 Cie = cast<FDE>(this)->getLinkedCIE();
442 if (Cie) {
443 CodeAlignmentFactor = Cie->getCodeAlignmentFactor();
444 DataAlignmentFactor = Cie->getDataAlignmentFactor();
445 }
446
447 for (const auto &Instr : Instructions) {
448 uint8_t Opcode = Instr.Opcode;
449 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
450 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
451 OS << " " << CallFrameString(Opcode) << ":";
452 for (unsigned i = 0; i < Instr.Ops.size(); ++i)
453 printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor,
454 DataAlignmentFactor);
455 OS << '\n';
456 }
457 }
458
DWARFDebugFrame(bool IsEH)459 DWARFDebugFrame::DWARFDebugFrame(bool IsEH) : IsEH(IsEH) {
460 }
461
~DWARFDebugFrame()462 DWARFDebugFrame::~DWARFDebugFrame() {
463 }
464
dumpDataAux(DataExtractor Data,uint32_t Offset,int Length)465 static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
466 uint32_t Offset, int Length) {
467 errs() << "DUMP: ";
468 for (int i = 0; i < Length; ++i) {
469 uint8_t c = Data.getU8(&Offset);
470 errs().write_hex(c); errs() << " ";
471 }
472 errs() << "\n";
473 }
474
getSizeForEncoding(const DataExtractor & Data,unsigned symbolEncoding)475 static unsigned getSizeForEncoding(const DataExtractor &Data,
476 unsigned symbolEncoding) {
477 unsigned format = symbolEncoding & 0x0f;
478 switch (format) {
479 default: llvm_unreachable("Unknown Encoding");
480 case dwarf::DW_EH_PE_absptr:
481 case dwarf::DW_EH_PE_signed:
482 return Data.getAddressSize();
483 case dwarf::DW_EH_PE_udata2:
484 case dwarf::DW_EH_PE_sdata2:
485 return 2;
486 case dwarf::DW_EH_PE_udata4:
487 case dwarf::DW_EH_PE_sdata4:
488 return 4;
489 case dwarf::DW_EH_PE_udata8:
490 case dwarf::DW_EH_PE_sdata8:
491 return 8;
492 }
493 }
494
readPointer(const DataExtractor & Data,uint32_t & Offset,unsigned Encoding)495 static uint64_t readPointer(const DataExtractor &Data, uint32_t &Offset,
496 unsigned Encoding) {
497 switch (getSizeForEncoding(Data, Encoding)) {
498 case 2:
499 return Data.getU16(&Offset);
500 case 4:
501 return Data.getU32(&Offset);
502 case 8:
503 return Data.getU64(&Offset);
504 default:
505 llvm_unreachable("Illegal data size");
506 }
507 }
508
parse(DataExtractor Data)509 void DWARFDebugFrame::parse(DataExtractor Data) {
510 uint32_t Offset = 0;
511 DenseMap<uint32_t, CIE *> CIEs;
512
513 while (Data.isValidOffset(Offset)) {
514 uint32_t StartOffset = Offset;
515
516 auto ReportError = [StartOffset](const char *ErrorMsg) {
517 std::string Str;
518 raw_string_ostream OS(Str);
519 OS << format(ErrorMsg, StartOffset);
520 OS.flush();
521 report_fatal_error(Str);
522 };
523
524 bool IsDWARF64 = false;
525 uint64_t Length = Data.getU32(&Offset);
526 uint64_t Id;
527
528 if (Length == UINT32_MAX) {
529 // DWARF-64 is distinguished by the first 32 bits of the initial length
530 // field being 0xffffffff. Then, the next 64 bits are the actual entry
531 // length.
532 IsDWARF64 = true;
533 Length = Data.getU64(&Offset);
534 }
535
536 // At this point, Offset points to the next field after Length.
537 // Length is the structure size excluding itself. Compute an offset one
538 // past the end of the structure (needed to know how many instructions to
539 // read).
540 // TODO: For honest DWARF64 support, DataExtractor will have to treat
541 // offset_ptr as uint64_t*
542 uint32_t StartStructureOffset = Offset;
543 uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
544
545 // The Id field's size depends on the DWARF format
546 Id = Data.getUnsigned(&Offset, (IsDWARF64 && !IsEH) ? 8 : 4);
547 bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) ||
548 Id == DW_CIE_ID ||
549 (IsEH && !Id));
550
551 if (IsCIE) {
552 uint8_t Version = Data.getU8(&Offset);
553 const char *Augmentation = Data.getCStr(&Offset);
554 StringRef AugmentationString(Augmentation ? Augmentation : "");
555 uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
556 Data.getU8(&Offset);
557 Data.setAddressSize(AddressSize);
558 uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
559 uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
560 int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
561 uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
562
563 // Parse the augmentation data for EH CIEs
564 StringRef AugmentationData("");
565 uint32_t FDEPointerEncoding = DW_EH_PE_omit;
566 uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
567 if (IsEH) {
568 Optional<uint32_t> PersonalityEncoding;
569 Optional<uint64_t> Personality;
570
571 Optional<uint64_t> AugmentationLength;
572 uint32_t StartAugmentationOffset;
573 uint32_t EndAugmentationOffset;
574
575 // Walk the augmentation string to get all the augmentation data.
576 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
577 switch (AugmentationString[i]) {
578 default:
579 ReportError("Unknown augmentation character in entry at %lx");
580 case 'L':
581 LSDAPointerEncoding = Data.getU8(&Offset);
582 break;
583 case 'P': {
584 if (Personality)
585 ReportError("Duplicate personality in entry at %lx");
586 PersonalityEncoding = Data.getU8(&Offset);
587 Personality = readPointer(Data, Offset, *PersonalityEncoding);
588 break;
589 }
590 case 'R':
591 FDEPointerEncoding = Data.getU8(&Offset);
592 break;
593 case 'z':
594 if (i)
595 ReportError("'z' must be the first character at %lx");
596 // Parse the augmentation length first. We only parse it if
597 // the string contains a 'z'.
598 AugmentationLength = Data.getULEB128(&Offset);
599 StartAugmentationOffset = Offset;
600 EndAugmentationOffset = Offset +
601 static_cast<uint32_t>(*AugmentationLength);
602 }
603 }
604
605 if (AugmentationLength.hasValue()) {
606 if (Offset != EndAugmentationOffset)
607 ReportError("Parsing augmentation data at %lx failed");
608
609 AugmentationData = Data.getData().slice(StartAugmentationOffset,
610 EndAugmentationOffset);
611 }
612 }
613
614 auto Cie = make_unique<CIE>(StartOffset, Length, Version,
615 AugmentationString, AddressSize,
616 SegmentDescriptorSize, CodeAlignmentFactor,
617 DataAlignmentFactor, ReturnAddressRegister,
618 AugmentationData, FDEPointerEncoding,
619 LSDAPointerEncoding);
620 CIEs[StartOffset] = Cie.get();
621 Entries.emplace_back(std::move(Cie));
622 } else {
623 // FDE
624 uint64_t CIEPointer = Id;
625 uint64_t InitialLocation = 0;
626 uint64_t AddressRange = 0;
627 CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
628
629 if (IsEH) {
630 // The address size is encoded in the CIE we reference.
631 if (!Cie)
632 ReportError("Parsing FDE data at %lx failed due to missing CIE");
633
634 InitialLocation = readPointer(Data, Offset,
635 Cie->getFDEPointerEncoding());
636 AddressRange = readPointer(Data, Offset,
637 Cie->getFDEPointerEncoding());
638
639 StringRef AugmentationString = Cie->getAugmentationString();
640 if (!AugmentationString.empty()) {
641 // Parse the augmentation length and data for this FDE.
642 uint64_t AugmentationLength = Data.getULEB128(&Offset);
643
644 uint32_t EndAugmentationOffset =
645 Offset + static_cast<uint32_t>(AugmentationLength);
646
647 // Decode the LSDA if the CIE augmentation string said we should.
648 if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit)
649 readPointer(Data, Offset, Cie->getLSDAPointerEncoding());
650
651 if (Offset != EndAugmentationOffset)
652 ReportError("Parsing augmentation data at %lx failed");
653 }
654 } else {
655 InitialLocation = Data.getAddress(&Offset);
656 AddressRange = Data.getAddress(&Offset);
657 }
658
659 Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
660 InitialLocation, AddressRange,
661 Cie));
662 }
663
664 Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset);
665
666 if (Offset != EndStructureOffset)
667 ReportError("Parsing entry instructions at %lx failed");
668 }
669 }
670
671
dump(raw_ostream & OS) const672 void DWARFDebugFrame::dump(raw_ostream &OS) const {
673 OS << "\n";
674 for (const auto &Entry : Entries) {
675 Entry->dumpHeader(OS);
676 Entry->dumpInstructions(OS);
677 OS << "\n";
678 }
679 }
680
681