1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains both code to deal with invoking "external" functions, but
11 //  also contains code that implements "exported" external functions.
12 //
13 //  There are currently two mechanisms for handling external functions in the
14 //  Interpreter.  The first is to implement lle_* wrapper functions that are
15 //  specific to well-known library functions which manually translate the
16 //  arguments from GenericValues and make the call.  If such a wrapper does
17 //  not exist, and libffi is available, then the Interpreter will attempt to
18 //  invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "Interpreter.h"
23 #include "llvm/Config/config.h"     // Detect libffi
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/Mutex.h"
31 #include "llvm/Support/UniqueLock.h"
32 #include <cmath>
33 #include <csignal>
34 #include <cstdio>
35 #include <cstring>
36 #include <map>
37 
38 #ifdef HAVE_FFI_CALL
39 #ifdef HAVE_FFI_H
40 #include <ffi.h>
41 #define USE_LIBFFI
42 #elif HAVE_FFI_FFI_H
43 #include <ffi/ffi.h>
44 #define USE_LIBFFI
45 #endif
46 #endif
47 
48 using namespace llvm;
49 
50 static ManagedStatic<sys::Mutex> FunctionsLock;
51 
52 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
54 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
55 
56 #ifdef USE_LIBFFI
57 typedef void (*RawFunc)();
58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
59 #endif
60 
61 static Interpreter *TheInterpreter;
62 
getTypeID(Type * Ty)63 static char getTypeID(Type *Ty) {
64   switch (Ty->getTypeID()) {
65   case Type::VoidTyID:    return 'V';
66   case Type::IntegerTyID:
67     switch (cast<IntegerType>(Ty)->getBitWidth()) {
68       case 1:  return 'o';
69       case 8:  return 'B';
70       case 16: return 'S';
71       case 32: return 'I';
72       case 64: return 'L';
73       default: return 'N';
74     }
75   case Type::FloatTyID:   return 'F';
76   case Type::DoubleTyID:  return 'D';
77   case Type::PointerTyID: return 'P';
78   case Type::FunctionTyID:return 'M';
79   case Type::StructTyID:  return 'T';
80   case Type::ArrayTyID:   return 'A';
81   default: return 'U';
82   }
83 }
84 
85 // Try to find address of external function given a Function object.
86 // Please note, that interpreter doesn't know how to assemble a
87 // real call in general case (this is JIT job), that's why it assumes,
88 // that all external functions has the same (and pretty "general") signature.
89 // The typical example of such functions are "lle_X_" ones.
lookupFunction(const Function * F)90 static ExFunc lookupFunction(const Function *F) {
91   // Function not found, look it up... start by figuring out what the
92   // composite function name should be.
93   std::string ExtName = "lle_";
94   FunctionType *FT = F->getFunctionType();
95   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
96     ExtName += getTypeID(FT->getContainedType(i));
97   ExtName += ("_" + F->getName()).str();
98 
99   sys::ScopedLock Writer(*FunctionsLock);
100   ExFunc FnPtr = (*FuncNames)[ExtName];
101   if (!FnPtr)
102     FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
103   if (!FnPtr)  // Try calling a generic function... if it exists...
104     FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
105         ("lle_X_" + F->getName()).str());
106   if (FnPtr)
107     ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
108   return FnPtr;
109 }
110 
111 #ifdef USE_LIBFFI
ffiTypeFor(Type * Ty)112 static ffi_type *ffiTypeFor(Type *Ty) {
113   switch (Ty->getTypeID()) {
114     case Type::VoidTyID: return &ffi_type_void;
115     case Type::IntegerTyID:
116       switch (cast<IntegerType>(Ty)->getBitWidth()) {
117         case 8:  return &ffi_type_sint8;
118         case 16: return &ffi_type_sint16;
119         case 32: return &ffi_type_sint32;
120         case 64: return &ffi_type_sint64;
121       }
122     case Type::FloatTyID:   return &ffi_type_float;
123     case Type::DoubleTyID:  return &ffi_type_double;
124     case Type::PointerTyID: return &ffi_type_pointer;
125     default: break;
126   }
127   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
128   report_fatal_error("Type could not be mapped for use with libffi.");
129   return NULL;
130 }
131 
ffiValueFor(Type * Ty,const GenericValue & AV,void * ArgDataPtr)132 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
133                          void *ArgDataPtr) {
134   switch (Ty->getTypeID()) {
135     case Type::IntegerTyID:
136       switch (cast<IntegerType>(Ty)->getBitWidth()) {
137         case 8: {
138           int8_t *I8Ptr = (int8_t *) ArgDataPtr;
139           *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
140           return ArgDataPtr;
141         }
142         case 16: {
143           int16_t *I16Ptr = (int16_t *) ArgDataPtr;
144           *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
145           return ArgDataPtr;
146         }
147         case 32: {
148           int32_t *I32Ptr = (int32_t *) ArgDataPtr;
149           *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
150           return ArgDataPtr;
151         }
152         case 64: {
153           int64_t *I64Ptr = (int64_t *) ArgDataPtr;
154           *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
155           return ArgDataPtr;
156         }
157       }
158     case Type::FloatTyID: {
159       float *FloatPtr = (float *) ArgDataPtr;
160       *FloatPtr = AV.FloatVal;
161       return ArgDataPtr;
162     }
163     case Type::DoubleTyID: {
164       double *DoublePtr = (double *) ArgDataPtr;
165       *DoublePtr = AV.DoubleVal;
166       return ArgDataPtr;
167     }
168     case Type::PointerTyID: {
169       void **PtrPtr = (void **) ArgDataPtr;
170       *PtrPtr = GVTOP(AV);
171       return ArgDataPtr;
172     }
173     default: break;
174   }
175   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
176   report_fatal_error("Type value could not be mapped for use with libffi.");
177   return NULL;
178 }
179 
ffiInvoke(RawFunc Fn,Function * F,ArrayRef<GenericValue> ArgVals,const DataLayout & TD,GenericValue & Result)180 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
181                       const DataLayout &TD, GenericValue &Result) {
182   ffi_cif cif;
183   FunctionType *FTy = F->getFunctionType();
184   const unsigned NumArgs = F->arg_size();
185 
186   // TODO: We don't have type information about the remaining arguments, because
187   // this information is never passed into ExecutionEngine::runFunction().
188   if (ArgVals.size() > NumArgs && F->isVarArg()) {
189     report_fatal_error("Calling external var arg function '" + F->getName()
190                       + "' is not supported by the Interpreter.");
191   }
192 
193   unsigned ArgBytes = 0;
194 
195   std::vector<ffi_type*> args(NumArgs);
196   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
197        A != E; ++A) {
198     const unsigned ArgNo = A->getArgNo();
199     Type *ArgTy = FTy->getParamType(ArgNo);
200     args[ArgNo] = ffiTypeFor(ArgTy);
201     ArgBytes += TD.getTypeStoreSize(ArgTy);
202   }
203 
204   SmallVector<uint8_t, 128> ArgData;
205   ArgData.resize(ArgBytes);
206   uint8_t *ArgDataPtr = ArgData.data();
207   SmallVector<void*, 16> values(NumArgs);
208   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
209        A != E; ++A) {
210     const unsigned ArgNo = A->getArgNo();
211     Type *ArgTy = FTy->getParamType(ArgNo);
212     values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
213     ArgDataPtr += TD.getTypeStoreSize(ArgTy);
214   }
215 
216   Type *RetTy = FTy->getReturnType();
217   ffi_type *rtype = ffiTypeFor(RetTy);
218 
219   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
220     SmallVector<uint8_t, 128> ret;
221     if (RetTy->getTypeID() != Type::VoidTyID)
222       ret.resize(TD.getTypeStoreSize(RetTy));
223     ffi_call(&cif, Fn, ret.data(), values.data());
224     switch (RetTy->getTypeID()) {
225       case Type::IntegerTyID:
226         switch (cast<IntegerType>(RetTy)->getBitWidth()) {
227           case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
228           case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
229           case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
230           case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
231         }
232         break;
233       case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
234       case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
235       case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
236       default: break;
237     }
238     return true;
239   }
240 
241   return false;
242 }
243 #endif // USE_LIBFFI
244 
callExternalFunction(Function * F,ArrayRef<GenericValue> ArgVals)245 GenericValue Interpreter::callExternalFunction(Function *F,
246                                                ArrayRef<GenericValue> ArgVals) {
247   TheInterpreter = this;
248 
249   unique_lock<sys::Mutex> Guard(*FunctionsLock);
250 
251   // Do a lookup to see if the function is in our cache... this should just be a
252   // deferred annotation!
253   std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
254   if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
255                                                    : FI->second) {
256     Guard.unlock();
257     return Fn(F->getFunctionType(), ArgVals);
258   }
259 
260 #ifdef USE_LIBFFI
261   std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
262   RawFunc RawFn;
263   if (RF == RawFunctions->end()) {
264     RawFn = (RawFunc)(intptr_t)
265       sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
266     if (!RawFn)
267       RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
268     if (RawFn != 0)
269       RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
270   } else {
271     RawFn = RF->second;
272   }
273 
274   Guard.unlock();
275 
276   GenericValue Result;
277   if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
278     return Result;
279 #endif // USE_LIBFFI
280 
281   if (F->getName() == "__main")
282     errs() << "Tried to execute an unknown external function: "
283       << *F->getType() << " __main\n";
284   else
285     report_fatal_error("Tried to execute an unknown external function: " +
286                        F->getName());
287 #ifndef USE_LIBFFI
288   errs() << "Recompiling LLVM with --enable-libffi might help.\n";
289 #endif
290   return GenericValue();
291 }
292 
293 
294 //===----------------------------------------------------------------------===//
295 //  Functions "exported" to the running application...
296 //
297 
298 // void atexit(Function*)
lle_X_atexit(FunctionType * FT,ArrayRef<GenericValue> Args)299 static GenericValue lle_X_atexit(FunctionType *FT,
300                                  ArrayRef<GenericValue> Args) {
301   assert(Args.size() == 1);
302   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
303   GenericValue GV;
304   GV.IntVal = 0;
305   return GV;
306 }
307 
308 // void exit(int)
lle_X_exit(FunctionType * FT,ArrayRef<GenericValue> Args)309 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
310   TheInterpreter->exitCalled(Args[0]);
311   return GenericValue();
312 }
313 
314 // void abort(void)
lle_X_abort(FunctionType * FT,ArrayRef<GenericValue> Args)315 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
316   //FIXME: should we report or raise here?
317   //report_fatal_error("Interpreted program raised SIGABRT");
318   raise (SIGABRT);
319   return GenericValue();
320 }
321 
322 // int sprintf(char *, const char *, ...) - a very rough implementation to make
323 // output useful.
lle_X_sprintf(FunctionType * FT,ArrayRef<GenericValue> Args)324 static GenericValue lle_X_sprintf(FunctionType *FT,
325                                   ArrayRef<GenericValue> Args) {
326   char *OutputBuffer = (char *)GVTOP(Args[0]);
327   const char *FmtStr = (const char *)GVTOP(Args[1]);
328   unsigned ArgNo = 2;
329 
330   // printf should return # chars printed.  This is completely incorrect, but
331   // close enough for now.
332   GenericValue GV;
333   GV.IntVal = APInt(32, strlen(FmtStr));
334   while (1) {
335     switch (*FmtStr) {
336     case 0: return GV;             // Null terminator...
337     default:                       // Normal nonspecial character
338       sprintf(OutputBuffer++, "%c", *FmtStr++);
339       break;
340     case '\\': {                   // Handle escape codes
341       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
342       FmtStr += 2; OutputBuffer += 2;
343       break;
344     }
345     case '%': {                    // Handle format specifiers
346       char FmtBuf[100] = "", Buffer[1000] = "";
347       char *FB = FmtBuf;
348       *FB++ = *FmtStr++;
349       char Last = *FB++ = *FmtStr++;
350       unsigned HowLong = 0;
351       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
352              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
353              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
354              Last != 'p' && Last != 's' && Last != '%') {
355         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
356         Last = *FB++ = *FmtStr++;
357       }
358       *FB = 0;
359 
360       switch (Last) {
361       case '%':
362         memcpy(Buffer, "%", 2); break;
363       case 'c':
364         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
365         break;
366       case 'd': case 'i':
367       case 'u': case 'o':
368       case 'x': case 'X':
369         if (HowLong >= 1) {
370           if (HowLong == 1 &&
371               TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
372               sizeof(long) < sizeof(int64_t)) {
373             // Make sure we use %lld with a 64 bit argument because we might be
374             // compiling LLI on a 32 bit compiler.
375             unsigned Size = strlen(FmtBuf);
376             FmtBuf[Size] = FmtBuf[Size-1];
377             FmtBuf[Size+1] = 0;
378             FmtBuf[Size-1] = 'l';
379           }
380           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
381         } else
382           sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
383         break;
384       case 'e': case 'E': case 'g': case 'G': case 'f':
385         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
386       case 'p':
387         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
388       case 's':
389         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
390       default:
391         errs() << "<unknown printf code '" << *FmtStr << "'!>";
392         ArgNo++; break;
393       }
394       size_t Len = strlen(Buffer);
395       memcpy(OutputBuffer, Buffer, Len + 1);
396       OutputBuffer += Len;
397       }
398       break;
399     }
400   }
401   return GV;
402 }
403 
404 // int printf(const char *, ...) - a very rough implementation to make output
405 // useful.
lle_X_printf(FunctionType * FT,ArrayRef<GenericValue> Args)406 static GenericValue lle_X_printf(FunctionType *FT,
407                                  ArrayRef<GenericValue> Args) {
408   char Buffer[10000];
409   std::vector<GenericValue> NewArgs;
410   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
411   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
412   GenericValue GV = lle_X_sprintf(FT, NewArgs);
413   outs() << Buffer;
414   return GV;
415 }
416 
417 // int sscanf(const char *format, ...);
lle_X_sscanf(FunctionType * FT,ArrayRef<GenericValue> args)418 static GenericValue lle_X_sscanf(FunctionType *FT,
419                                  ArrayRef<GenericValue> args) {
420   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
421 
422   char *Args[10];
423   for (unsigned i = 0; i < args.size(); ++i)
424     Args[i] = (char*)GVTOP(args[i]);
425 
426   GenericValue GV;
427   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
428                     Args[5], Args[6], Args[7], Args[8], Args[9]));
429   return GV;
430 }
431 
432 // int scanf(const char *format, ...);
lle_X_scanf(FunctionType * FT,ArrayRef<GenericValue> args)433 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
434   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
435 
436   char *Args[10];
437   for (unsigned i = 0; i < args.size(); ++i)
438     Args[i] = (char*)GVTOP(args[i]);
439 
440   GenericValue GV;
441   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
442                     Args[5], Args[6], Args[7], Args[8], Args[9]));
443   return GV;
444 }
445 
446 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
447 // output useful.
lle_X_fprintf(FunctionType * FT,ArrayRef<GenericValue> Args)448 static GenericValue lle_X_fprintf(FunctionType *FT,
449                                   ArrayRef<GenericValue> Args) {
450   assert(Args.size() >= 2);
451   char Buffer[10000];
452   std::vector<GenericValue> NewArgs;
453   NewArgs.push_back(PTOGV(Buffer));
454   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
455   GenericValue GV = lle_X_sprintf(FT, NewArgs);
456 
457   fputs(Buffer, (FILE *) GVTOP(Args[0]));
458   return GV;
459 }
460 
lle_X_memset(FunctionType * FT,ArrayRef<GenericValue> Args)461 static GenericValue lle_X_memset(FunctionType *FT,
462                                  ArrayRef<GenericValue> Args) {
463   int val = (int)Args[1].IntVal.getSExtValue();
464   size_t len = (size_t)Args[2].IntVal.getZExtValue();
465   memset((void *)GVTOP(Args[0]), val, len);
466   // llvm.memset.* returns void, lle_X_* returns GenericValue,
467   // so here we return GenericValue with IntVal set to zero
468   GenericValue GV;
469   GV.IntVal = 0;
470   return GV;
471 }
472 
lle_X_memcpy(FunctionType * FT,ArrayRef<GenericValue> Args)473 static GenericValue lle_X_memcpy(FunctionType *FT,
474                                  ArrayRef<GenericValue> Args) {
475   memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
476          (size_t)(Args[2].IntVal.getLimitedValue()));
477 
478   // llvm.memcpy* returns void, lle_X_* returns GenericValue,
479   // so here we return GenericValue with IntVal set to zero
480   GenericValue GV;
481   GV.IntVal = 0;
482   return GV;
483 }
484 
initializeExternalFunctions()485 void Interpreter::initializeExternalFunctions() {
486   sys::ScopedLock Writer(*FunctionsLock);
487   (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
488   (*FuncNames)["lle_X_exit"]         = lle_X_exit;
489   (*FuncNames)["lle_X_abort"]        = lle_X_abort;
490 
491   (*FuncNames)["lle_X_printf"]       = lle_X_printf;
492   (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
493   (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
494   (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
495   (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
496   (*FuncNames)["lle_X_memset"]       = lle_X_memset;
497   (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
498 }
499