1 //===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Orc based MCJIT replacement.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
15 #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
16 
17 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
19 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
20 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
21 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
22 #include "llvm/Object/Archive.h"
23 
24 namespace llvm {
25 namespace orc {
26 
27 class OrcMCJITReplacement : public ExecutionEngine {
28 
29   // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
30   // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
31   // expecting - see finalizeMemory.
32   class MCJITReplacementMemMgr : public MCJITMemoryManager {
33   public:
MCJITReplacementMemMgr(OrcMCJITReplacement & M,std::shared_ptr<MCJITMemoryManager> ClientMM)34     MCJITReplacementMemMgr(OrcMCJITReplacement &M,
35                            std::shared_ptr<MCJITMemoryManager> ClientMM)
36       : M(M), ClientMM(std::move(ClientMM)) {}
37 
allocateCodeSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName)38     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
39                                  unsigned SectionID,
40                                  StringRef SectionName) override {
41       uint8_t *Addr =
42           ClientMM->allocateCodeSection(Size, Alignment, SectionID,
43                                         SectionName);
44       M.SectionsAllocatedSinceLastLoad.insert(Addr);
45       return Addr;
46     }
47 
allocateDataSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName,bool IsReadOnly)48     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
49                                  unsigned SectionID, StringRef SectionName,
50                                  bool IsReadOnly) override {
51       uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
52                                                     SectionName, IsReadOnly);
53       M.SectionsAllocatedSinceLastLoad.insert(Addr);
54       return Addr;
55     }
56 
reserveAllocationSpace(uintptr_t CodeSize,uint32_t CodeAlign,uintptr_t RODataSize,uint32_t RODataAlign,uintptr_t RWDataSize,uint32_t RWDataAlign)57     void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
58                                 uintptr_t RODataSize, uint32_t RODataAlign,
59                                 uintptr_t RWDataSize,
60                                 uint32_t RWDataAlign) override {
61       return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign,
62                                               RODataSize, RODataAlign,
63                                               RWDataSize, RWDataAlign);
64     }
65 
needsToReserveAllocationSpace()66     bool needsToReserveAllocationSpace() override {
67       return ClientMM->needsToReserveAllocationSpace();
68     }
69 
registerEHFrames(uint8_t * Addr,uint64_t LoadAddr,size_t Size)70     void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
71                           size_t Size) override {
72       return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
73     }
74 
deregisterEHFrames(uint8_t * Addr,uint64_t LoadAddr,size_t Size)75     void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
76                             size_t Size) override {
77       return ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
78     }
79 
notifyObjectLoaded(RuntimeDyld & RTDyld,const object::ObjectFile & O)80     void notifyObjectLoaded(RuntimeDyld &RTDyld,
81                             const object::ObjectFile &O) override {
82       return ClientMM->notifyObjectLoaded(RTDyld, O);
83     }
84 
notifyObjectLoaded(ExecutionEngine * EE,const object::ObjectFile & O)85     void notifyObjectLoaded(ExecutionEngine *EE,
86                             const object::ObjectFile &O) override {
87       return ClientMM->notifyObjectLoaded(EE, O);
88     }
89 
90     bool finalizeMemory(std::string *ErrMsg = nullptr) override {
91       // Each set of objects loaded will be finalized exactly once, but since
92       // symbol lookup during relocation may recursively trigger the
93       // loading/relocation of other modules, and since we're forwarding all
94       // finalizeMemory calls to a single underlying memory manager, we need to
95       // defer forwarding the call on until all necessary objects have been
96       // loaded. Otherwise, during the relocation of a leaf object, we will end
97       // up finalizing memory, causing a crash further up the stack when we
98       // attempt to apply relocations to finalized memory.
99       // To avoid finalizing too early, look at how many objects have been
100       // loaded but not yet finalized. This is a bit of a hack that relies on
101       // the fact that we're lazily emitting object files: The only way you can
102       // get more than one set of objects loaded but not yet finalized is if
103       // they were loaded during relocation of another set.
104       if (M.UnfinalizedSections.size() == 1)
105         return ClientMM->finalizeMemory(ErrMsg);
106       return false;
107     }
108 
109   private:
110     OrcMCJITReplacement &M;
111     std::shared_ptr<MCJITMemoryManager> ClientMM;
112   };
113 
114   class LinkingResolver : public RuntimeDyld::SymbolResolver {
115   public:
LinkingResolver(OrcMCJITReplacement & M)116     LinkingResolver(OrcMCJITReplacement &M) : M(M) {}
117 
findSymbol(const std::string & Name)118     RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
119       return M.findMangledSymbol(Name);
120     }
121 
122     RuntimeDyld::SymbolInfo
findSymbolInLogicalDylib(const std::string & Name)123     findSymbolInLogicalDylib(const std::string &Name) override {
124       return M.ClientResolver->findSymbol(Name);
125     }
126 
127   private:
128     OrcMCJITReplacement &M;
129   };
130 
131 private:
132 
133   static ExecutionEngine *
createOrcMCJITReplacement(std::string * ErrorMsg,std::shared_ptr<MCJITMemoryManager> MemMgr,std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,std::unique_ptr<TargetMachine> TM)134   createOrcMCJITReplacement(std::string *ErrorMsg,
135                             std::shared_ptr<MCJITMemoryManager> MemMgr,
136                             std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
137                             std::unique_ptr<TargetMachine> TM) {
138     return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
139                                    std::move(TM));
140   }
141 
142 public:
Register()143   static void Register() {
144     OrcMCJITReplacementCtor = createOrcMCJITReplacement;
145   }
146 
OrcMCJITReplacement(std::shared_ptr<MCJITMemoryManager> MemMgr,std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver,std::unique_ptr<TargetMachine> TM)147   OrcMCJITReplacement(
148       std::shared_ptr<MCJITMemoryManager> MemMgr,
149       std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver,
150       std::unique_ptr<TargetMachine> TM)
151       : ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)),
152         MemMgr(*this, std::move(MemMgr)), Resolver(*this),
153         ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this),
154         NotifyFinalized(*this),
155         ObjectLayer(NotifyObjectLoaded, NotifyFinalized),
156         CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
157         LazyEmitLayer(CompileLayer) {}
158 
addModule(std::unique_ptr<Module> M)159   void addModule(std::unique_ptr<Module> M) override {
160 
161     // If this module doesn't have a DataLayout attached then attach the
162     // default.
163     if (M->getDataLayout().isDefault()) {
164       M->setDataLayout(getDataLayout());
165     } else {
166       assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
167     }
168     Modules.push_back(std::move(M));
169     std::vector<Module *> Ms;
170     Ms.push_back(&*Modules.back());
171     LazyEmitLayer.addModuleSet(std::move(Ms), &MemMgr, &Resolver);
172   }
173 
addObjectFile(std::unique_ptr<object::ObjectFile> O)174   void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
175     std::vector<std::unique_ptr<object::ObjectFile>> Objs;
176     Objs.push_back(std::move(O));
177     ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
178   }
179 
addObjectFile(object::OwningBinary<object::ObjectFile> O)180   void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
181     std::vector<std::unique_ptr<object::OwningBinary<object::ObjectFile>>> Objs;
182     Objs.push_back(
183       llvm::make_unique<object::OwningBinary<object::ObjectFile>>(
184         std::move(O)));
185     ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
186   }
187 
addArchive(object::OwningBinary<object::Archive> A)188   void addArchive(object::OwningBinary<object::Archive> A) override {
189     Archives.push_back(std::move(A));
190   }
191 
getSymbolAddress(StringRef Name)192   uint64_t getSymbolAddress(StringRef Name) {
193     return findSymbol(Name).getAddress();
194   }
195 
findSymbol(StringRef Name)196   RuntimeDyld::SymbolInfo findSymbol(StringRef Name) {
197     return findMangledSymbol(Mangle(Name));
198   }
199 
finalizeObject()200   void finalizeObject() override {
201     // This is deprecated - Aim to remove in ExecutionEngine.
202     // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
203   }
204 
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)205   void mapSectionAddress(const void *LocalAddress,
206                          uint64_t TargetAddress) override {
207     for (auto &P : UnfinalizedSections)
208       if (P.second.count(LocalAddress))
209         ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
210   }
211 
getGlobalValueAddress(const std::string & Name)212   uint64_t getGlobalValueAddress(const std::string &Name) override {
213     return getSymbolAddress(Name);
214   }
215 
getFunctionAddress(const std::string & Name)216   uint64_t getFunctionAddress(const std::string &Name) override {
217     return getSymbolAddress(Name);
218   }
219 
getPointerToFunction(Function * F)220   void *getPointerToFunction(Function *F) override {
221     uint64_t FAddr = getSymbolAddress(F->getName());
222     return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
223   }
224 
225   void *getPointerToNamedFunction(StringRef Name,
226                                   bool AbortOnFailure = true) override {
227     uint64_t Addr = getSymbolAddress(Name);
228     if (!Addr && AbortOnFailure)
229       llvm_unreachable("Missing symbol!");
230     return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
231   }
232 
233   GenericValue runFunction(Function *F,
234                            ArrayRef<GenericValue> ArgValues) override;
235 
setObjectCache(ObjectCache * NewCache)236   void setObjectCache(ObjectCache *NewCache) override {
237     CompileLayer.setObjectCache(NewCache);
238   }
239 
setProcessAllSections(bool ProcessAllSections)240   void setProcessAllSections(bool ProcessAllSections) override {
241     ObjectLayer.setProcessAllSections(ProcessAllSections);
242   }
243 
244 private:
245 
findMangledSymbol(StringRef Name)246   RuntimeDyld::SymbolInfo findMangledSymbol(StringRef Name) {
247     if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
248       return Sym.toRuntimeDyldSymbol();
249     if (auto Sym = ClientResolver->findSymbol(Name))
250       return Sym;
251     if (auto Sym = scanArchives(Name))
252       return Sym.toRuntimeDyldSymbol();
253 
254     return nullptr;
255   }
256 
scanArchives(StringRef Name)257   JITSymbol scanArchives(StringRef Name) {
258     for (object::OwningBinary<object::Archive> &OB : Archives) {
259       object::Archive *A = OB.getBinary();
260       // Look for our symbols in each Archive
261       auto OptionalChildOrErr = A->findSym(Name);
262       if (!OptionalChildOrErr)
263         report_fatal_error(OptionalChildOrErr.takeError());
264       auto &OptionalChild = *OptionalChildOrErr;
265       if (OptionalChild) {
266         // FIXME: Support nested archives?
267         Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
268             OptionalChild->getAsBinary();
269         if (!ChildBinOrErr) {
270           // TODO: Actually report errors helpfully.
271           consumeError(ChildBinOrErr.takeError());
272           continue;
273         }
274         std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
275         if (ChildBin->isObject()) {
276           std::vector<std::unique_ptr<object::ObjectFile>> ObjSet;
277           ObjSet.push_back(std::unique_ptr<object::ObjectFile>(
278               static_cast<object::ObjectFile *>(ChildBin.release())));
279           ObjectLayer.addObjectSet(std::move(ObjSet), &MemMgr, &Resolver);
280           if (auto Sym = ObjectLayer.findSymbol(Name, true))
281             return Sym;
282         }
283       }
284     }
285     return nullptr;
286   }
287 
288   class NotifyObjectLoadedT {
289   public:
290     typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>
291         LoadedObjInfoListT;
292 
NotifyObjectLoadedT(OrcMCJITReplacement & M)293     NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
294 
295     template <typename ObjListT>
operator()296     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H,
297                     const ObjListT &Objects,
298                     const LoadedObjInfoListT &Infos) const {
299       M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
300       M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
301       assert(Objects.size() == Infos.size() &&
302              "Incorrect number of Infos for Objects.");
303       for (unsigned I = 0; I < Objects.size(); ++I)
304         M.MemMgr.notifyObjectLoaded(&M, getObject(*Objects[I]));
305     }
306 
307   private:
308 
getObject(const object::ObjectFile & Obj)309     static const object::ObjectFile& getObject(const object::ObjectFile &Obj) {
310       return Obj;
311     }
312 
313     template <typename ObjT>
314     static const object::ObjectFile&
getObject(const object::OwningBinary<ObjT> & Obj)315     getObject(const object::OwningBinary<ObjT> &Obj) {
316       return *Obj.getBinary();
317     }
318 
319     OrcMCJITReplacement &M;
320   };
321 
322   class NotifyFinalizedT {
323   public:
NotifyFinalizedT(OrcMCJITReplacement & M)324     NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
operator()325     void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) {
326       M.UnfinalizedSections.erase(H);
327     }
328 
329   private:
330     OrcMCJITReplacement &M;
331   };
332 
Mangle(StringRef Name)333   std::string Mangle(StringRef Name) {
334     std::string MangledName;
335     {
336       raw_string_ostream MangledNameStream(MangledName);
337       Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout());
338     }
339     return MangledName;
340   }
341 
342   typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT;
343   typedef IRCompileLayer<ObjectLayerT> CompileLayerT;
344   typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
345 
346   std::unique_ptr<TargetMachine> TM;
347   MCJITReplacementMemMgr MemMgr;
348   LinkingResolver Resolver;
349   std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver;
350   Mangler Mang;
351 
352   NotifyObjectLoadedT NotifyObjectLoaded;
353   NotifyFinalizedT NotifyFinalized;
354 
355   ObjectLayerT ObjectLayer;
356   CompileLayerT CompileLayer;
357   LazyEmitLayerT LazyEmitLayer;
358 
359   // We need to store ObjLayerT::ObjSetHandles for each of the object sets
360   // that have been emitted but not yet finalized so that we can forward the
361   // mapSectionAddress calls appropriately.
362   typedef std::set<const void *> SectionAddrSet;
363   struct ObjSetHandleCompare {
operatorObjSetHandleCompare364     bool operator()(ObjectLayerT::ObjSetHandleT H1,
365                     ObjectLayerT::ObjSetHandleT H2) const {
366       return &*H1 < &*H2;
367     }
368   };
369   SectionAddrSet SectionsAllocatedSinceLastLoad;
370   std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare>
371       UnfinalizedSections;
372 
373   std::vector<object::OwningBinary<object::Archive>> Archives;
374 };
375 
376 } // End namespace orc.
377 } // End namespace llvm.
378 
379 #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H
380