1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GenericDomTreeConstruction.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace llvm;
29
30 // Always verify dominfo if expensive checking is enabled.
31 #ifdef EXPENSIVE_CHECKS
32 static bool VerifyDomInfo = true;
33 #else
34 static bool VerifyDomInfo = false;
35 #endif
36 static cl::opt<bool,true>
37 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38 cl::desc("Verify dominator info (time consuming)"));
39
isSingleEdge() const40 bool BasicBlockEdge::isSingleEdge() const {
41 const TerminatorInst *TI = Start->getTerminator();
42 unsigned NumEdgesToEnd = 0;
43 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44 if (TI->getSuccessor(i) == End)
45 ++NumEdgesToEnd;
46 if (NumEdgesToEnd >= 2)
47 return false;
48 }
49 assert(NumEdgesToEnd == 1);
50 return true;
51 }
52
53 //===----------------------------------------------------------------------===//
54 // DominatorTree Implementation
55 //===----------------------------------------------------------------------===//
56 //
57 // Provide public access to DominatorTree information. Implementation details
58 // can be found in Dominators.h, GenericDomTree.h, and
59 // GenericDomTreeConstruction.h.
60 //
61 //===----------------------------------------------------------------------===//
62
63 template class llvm::DomTreeNodeBase<BasicBlock>;
64 template class llvm::DominatorTreeBase<BasicBlock>;
65
66 template void llvm::Calculate<Function, BasicBlock *>(
67 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
68 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
69 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
70 Function &F);
71
72 // dominates - Return true if Def dominates a use in User. This performs
73 // the special checks necessary if Def and User are in the same basic block.
74 // Note that Def doesn't dominate a use in Def itself!
dominates(const Instruction * Def,const Instruction * User) const75 bool DominatorTree::dominates(const Instruction *Def,
76 const Instruction *User) const {
77 const BasicBlock *UseBB = User->getParent();
78 const BasicBlock *DefBB = Def->getParent();
79
80 // Any unreachable use is dominated, even if Def == User.
81 if (!isReachableFromEntry(UseBB))
82 return true;
83
84 // Unreachable definitions don't dominate anything.
85 if (!isReachableFromEntry(DefBB))
86 return false;
87
88 // An instruction doesn't dominate a use in itself.
89 if (Def == User)
90 return false;
91
92 // The value defined by an invoke dominates an instruction only if it
93 // dominates every instruction in UseBB.
94 // A PHI is dominated only if the instruction dominates every possible use in
95 // the UseBB.
96 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
97 return dominates(Def, UseBB);
98
99 if (DefBB != UseBB)
100 return dominates(DefBB, UseBB);
101
102 // Loop through the basic block until we find Def or User.
103 BasicBlock::const_iterator I = DefBB->begin();
104 for (; &*I != Def && &*I != User; ++I)
105 /*empty*/;
106
107 return &*I == Def;
108 }
109
110 // true if Def would dominate a use in any instruction in UseBB.
111 // note that dominates(Def, Def->getParent()) is false.
dominates(const Instruction * Def,const BasicBlock * UseBB) const112 bool DominatorTree::dominates(const Instruction *Def,
113 const BasicBlock *UseBB) const {
114 const BasicBlock *DefBB = Def->getParent();
115
116 // Any unreachable use is dominated, even if DefBB == UseBB.
117 if (!isReachableFromEntry(UseBB))
118 return true;
119
120 // Unreachable definitions don't dominate anything.
121 if (!isReachableFromEntry(DefBB))
122 return false;
123
124 if (DefBB == UseBB)
125 return false;
126
127 // Invoke results are only usable in the normal destination, not in the
128 // exceptional destination.
129 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
130 BasicBlock *NormalDest = II->getNormalDest();
131 BasicBlockEdge E(DefBB, NormalDest);
132 return dominates(E, UseBB);
133 }
134
135 return dominates(DefBB, UseBB);
136 }
137
dominates(const BasicBlockEdge & BBE,const BasicBlock * UseBB) const138 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
139 const BasicBlock *UseBB) const {
140 // Assert that we have a single edge. We could handle them by simply
141 // returning false, but since isSingleEdge is linear on the number of
142 // edges, the callers can normally handle them more efficiently.
143 assert(BBE.isSingleEdge() &&
144 "This function is not efficient in handling multiple edges");
145
146 // If the BB the edge ends in doesn't dominate the use BB, then the
147 // edge also doesn't.
148 const BasicBlock *Start = BBE.getStart();
149 const BasicBlock *End = BBE.getEnd();
150 if (!dominates(End, UseBB))
151 return false;
152
153 // Simple case: if the end BB has a single predecessor, the fact that it
154 // dominates the use block implies that the edge also does.
155 if (End->getSinglePredecessor())
156 return true;
157
158 // The normal edge from the invoke is critical. Conceptually, what we would
159 // like to do is split it and check if the new block dominates the use.
160 // With X being the new block, the graph would look like:
161 //
162 // DefBB
163 // /\ . .
164 // / \ . .
165 // / \ . .
166 // / \ | |
167 // A X B C
168 // | \ | /
169 // . \|/
170 // . NormalDest
171 // .
172 //
173 // Given the definition of dominance, NormalDest is dominated by X iff X
174 // dominates all of NormalDest's predecessors (X, B, C in the example). X
175 // trivially dominates itself, so we only have to find if it dominates the
176 // other predecessors. Since the only way out of X is via NormalDest, X can
177 // only properly dominate a node if NormalDest dominates that node too.
178 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
179 PI != E; ++PI) {
180 const BasicBlock *BB = *PI;
181 if (BB == Start)
182 continue;
183
184 if (!dominates(End, BB))
185 return false;
186 }
187 return true;
188 }
189
dominates(const BasicBlockEdge & BBE,const Use & U) const190 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
191 // Assert that we have a single edge. We could handle them by simply
192 // returning false, but since isSingleEdge is linear on the number of
193 // edges, the callers can normally handle them more efficiently.
194 assert(BBE.isSingleEdge() &&
195 "This function is not efficient in handling multiple edges");
196
197 Instruction *UserInst = cast<Instruction>(U.getUser());
198 // A PHI in the end of the edge is dominated by it.
199 PHINode *PN = dyn_cast<PHINode>(UserInst);
200 if (PN && PN->getParent() == BBE.getEnd() &&
201 PN->getIncomingBlock(U) == BBE.getStart())
202 return true;
203
204 // Otherwise use the edge-dominates-block query, which
205 // handles the crazy critical edge cases properly.
206 const BasicBlock *UseBB;
207 if (PN)
208 UseBB = PN->getIncomingBlock(U);
209 else
210 UseBB = UserInst->getParent();
211 return dominates(BBE, UseBB);
212 }
213
dominates(const Instruction * Def,const Use & U) const214 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
215 Instruction *UserInst = cast<Instruction>(U.getUser());
216 const BasicBlock *DefBB = Def->getParent();
217
218 // Determine the block in which the use happens. PHI nodes use
219 // their operands on edges; simulate this by thinking of the use
220 // happening at the end of the predecessor block.
221 const BasicBlock *UseBB;
222 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
223 UseBB = PN->getIncomingBlock(U);
224 else
225 UseBB = UserInst->getParent();
226
227 // Any unreachable use is dominated, even if Def == User.
228 if (!isReachableFromEntry(UseBB))
229 return true;
230
231 // Unreachable definitions don't dominate anything.
232 if (!isReachableFromEntry(DefBB))
233 return false;
234
235 // Invoke instructions define their return values on the edges to their normal
236 // successors, so we have to handle them specially.
237 // Among other things, this means they don't dominate anything in
238 // their own block, except possibly a phi, so we don't need to
239 // walk the block in any case.
240 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
241 BasicBlock *NormalDest = II->getNormalDest();
242 BasicBlockEdge E(DefBB, NormalDest);
243 return dominates(E, U);
244 }
245
246 // If the def and use are in different blocks, do a simple CFG dominator
247 // tree query.
248 if (DefBB != UseBB)
249 return dominates(DefBB, UseBB);
250
251 // Ok, def and use are in the same block. If the def is an invoke, it
252 // doesn't dominate anything in the block. If it's a PHI, it dominates
253 // everything in the block.
254 if (isa<PHINode>(UserInst))
255 return true;
256
257 // Otherwise, just loop through the basic block until we find Def or User.
258 BasicBlock::const_iterator I = DefBB->begin();
259 for (; &*I != Def && &*I != UserInst; ++I)
260 /*empty*/;
261
262 return &*I != UserInst;
263 }
264
isReachableFromEntry(const Use & U) const265 bool DominatorTree::isReachableFromEntry(const Use &U) const {
266 Instruction *I = dyn_cast<Instruction>(U.getUser());
267
268 // ConstantExprs aren't really reachable from the entry block, but they
269 // don't need to be treated like unreachable code either.
270 if (!I) return true;
271
272 // PHI nodes use their operands on their incoming edges.
273 if (PHINode *PN = dyn_cast<PHINode>(I))
274 return isReachableFromEntry(PN->getIncomingBlock(U));
275
276 // Everything else uses their operands in their own block.
277 return isReachableFromEntry(I->getParent());
278 }
279
verifyDomTree() const280 void DominatorTree::verifyDomTree() const {
281 Function &F = *getRoot()->getParent();
282
283 DominatorTree OtherDT;
284 OtherDT.recalculate(F);
285 if (compare(OtherDT)) {
286 errs() << "DominatorTree is not up to date!\nComputed:\n";
287 print(errs());
288 errs() << "\nActual:\n";
289 OtherDT.print(errs());
290 abort();
291 }
292 }
293
294 //===----------------------------------------------------------------------===//
295 // DominatorTreeAnalysis and related pass implementations
296 //===----------------------------------------------------------------------===//
297 //
298 // This implements the DominatorTreeAnalysis which is used with the new pass
299 // manager. It also implements some methods from utility passes.
300 //
301 //===----------------------------------------------------------------------===//
302
run(Function & F,AnalysisManager<Function> &)303 DominatorTree DominatorTreeAnalysis::run(Function &F,
304 AnalysisManager<Function> &) {
305 DominatorTree DT;
306 DT.recalculate(F);
307 return DT;
308 }
309
310 char DominatorTreeAnalysis::PassID;
311
DominatorTreePrinterPass(raw_ostream & OS)312 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
313
run(Function & F,FunctionAnalysisManager & AM)314 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
315 FunctionAnalysisManager &AM) {
316 OS << "DominatorTree for function: " << F.getName() << "\n";
317 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
318
319 return PreservedAnalyses::all();
320 }
321
run(Function & F,FunctionAnalysisManager & AM)322 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
323 FunctionAnalysisManager &AM) {
324 AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
325
326 return PreservedAnalyses::all();
327 }
328
329 //===----------------------------------------------------------------------===//
330 // DominatorTreeWrapperPass Implementation
331 //===----------------------------------------------------------------------===//
332 //
333 // The implementation details of the wrapper pass that holds a DominatorTree
334 // suitable for use with the legacy pass manager.
335 //
336 //===----------------------------------------------------------------------===//
337
338 char DominatorTreeWrapperPass::ID = 0;
339 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
340 "Dominator Tree Construction", true, true)
341
runOnFunction(Function & F)342 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
343 DT.recalculate(F);
344 return false;
345 }
346
verifyAnalysis() const347 void DominatorTreeWrapperPass::verifyAnalysis() const {
348 if (VerifyDomInfo)
349 DT.verifyDomTree();
350 }
351
print(raw_ostream & OS,const Module *) const352 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
353 DT.print(OS);
354 }
355
356