1 //===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the InlineAsm class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/InlineAsm.h"
15 #include "ConstantsContext.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include <algorithm>
19 #include <cctype>
20 using namespace llvm;
21
22 // Implement the first virtual method in this class in this file so the
23 // InlineAsm vtable is emitted here.
~InlineAsm()24 InlineAsm::~InlineAsm() {
25 }
26
get(FunctionType * FTy,StringRef AsmString,StringRef Constraints,bool hasSideEffects,bool isAlignStack,AsmDialect asmDialect)27 InlineAsm *InlineAsm::get(FunctionType *FTy, StringRef AsmString,
28 StringRef Constraints, bool hasSideEffects,
29 bool isAlignStack, AsmDialect asmDialect) {
30 InlineAsmKeyType Key(AsmString, Constraints, FTy, hasSideEffects,
31 isAlignStack, asmDialect);
32 LLVMContextImpl *pImpl = FTy->getContext().pImpl;
33 return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(FTy), Key);
34 }
35
InlineAsm(FunctionType * FTy,const std::string & asmString,const std::string & constraints,bool hasSideEffects,bool isAlignStack,AsmDialect asmDialect)36 InlineAsm::InlineAsm(FunctionType *FTy, const std::string &asmString,
37 const std::string &constraints, bool hasSideEffects,
38 bool isAlignStack, AsmDialect asmDialect)
39 : Value(PointerType::getUnqual(FTy), Value::InlineAsmVal),
40 AsmString(asmString), Constraints(constraints), FTy(FTy),
41 HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack),
42 Dialect(asmDialect) {
43
44 // Do various checks on the constraint string and type.
45 assert(Verify(getFunctionType(), constraints) &&
46 "Function type not legal for constraints!");
47 }
48
destroyConstant()49 void InlineAsm::destroyConstant() {
50 getType()->getContext().pImpl->InlineAsms.remove(this);
51 delete this;
52 }
53
getFunctionType() const54 FunctionType *InlineAsm::getFunctionType() const {
55 return FTy;
56 }
57
58 ///Default constructor.
ConstraintInfo()59 InlineAsm::ConstraintInfo::ConstraintInfo() :
60 Type(isInput), isEarlyClobber(false),
61 MatchingInput(-1), isCommutative(false),
62 isIndirect(false), isMultipleAlternative(false),
63 currentAlternativeIndex(0) {
64 }
65
66 /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
67 /// fields in this structure. If the constraint string is not understood,
68 /// return true, otherwise return false.
Parse(StringRef Str,InlineAsm::ConstraintInfoVector & ConstraintsSoFar)69 bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
70 InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
71 StringRef::iterator I = Str.begin(), E = Str.end();
72 unsigned multipleAlternativeCount = Str.count('|') + 1;
73 unsigned multipleAlternativeIndex = 0;
74 ConstraintCodeVector *pCodes = &Codes;
75
76 // Initialize
77 isMultipleAlternative = multipleAlternativeCount > 1;
78 if (isMultipleAlternative) {
79 multipleAlternatives.resize(multipleAlternativeCount);
80 pCodes = &multipleAlternatives[0].Codes;
81 }
82 Type = isInput;
83 isEarlyClobber = false;
84 MatchingInput = -1;
85 isCommutative = false;
86 isIndirect = false;
87 currentAlternativeIndex = 0;
88
89 // Parse prefixes.
90 if (*I == '~') {
91 Type = isClobber;
92 ++I;
93
94 // '{' must immediately follow '~'.
95 if (I != E && *I != '{')
96 return true;
97 } else if (*I == '=') {
98 ++I;
99 Type = isOutput;
100 }
101
102 if (*I == '*') {
103 isIndirect = true;
104 ++I;
105 }
106
107 if (I == E) return true; // Just a prefix, like "==" or "~".
108
109 // Parse the modifiers.
110 bool DoneWithModifiers = false;
111 while (!DoneWithModifiers) {
112 switch (*I) {
113 default:
114 DoneWithModifiers = true;
115 break;
116 case '&': // Early clobber.
117 if (Type != isOutput || // Cannot early clobber anything but output.
118 isEarlyClobber) // Reject &&&&&&
119 return true;
120 isEarlyClobber = true;
121 break;
122 case '%': // Commutative.
123 if (Type == isClobber || // Cannot commute clobbers.
124 isCommutative) // Reject %%%%%
125 return true;
126 isCommutative = true;
127 break;
128 case '#': // Comment.
129 case '*': // Register preferencing.
130 return true; // Not supported.
131 }
132
133 if (!DoneWithModifiers) {
134 ++I;
135 if (I == E) return true; // Just prefixes and modifiers!
136 }
137 }
138
139 // Parse the various constraints.
140 while (I != E) {
141 if (*I == '{') { // Physical register reference.
142 // Find the end of the register name.
143 StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
144 if (ConstraintEnd == E) return true; // "{foo"
145 pCodes->push_back(StringRef(I, ConstraintEnd+1 - I));
146 I = ConstraintEnd+1;
147 } else if (isdigit(static_cast<unsigned char>(*I))) { // Matching Constraint
148 // Maximal munch numbers.
149 StringRef::iterator NumStart = I;
150 while (I != E && isdigit(static_cast<unsigned char>(*I)))
151 ++I;
152 pCodes->push_back(StringRef(NumStart, I - NumStart));
153 unsigned N = atoi(pCodes->back().c_str());
154 // Check that this is a valid matching constraint!
155 if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
156 Type != isInput)
157 return true; // Invalid constraint number.
158
159 // If Operand N already has a matching input, reject this. An output
160 // can't be constrained to the same value as multiple inputs.
161 if (isMultipleAlternative) {
162 if (multipleAlternativeIndex >=
163 ConstraintsSoFar[N].multipleAlternatives.size())
164 return true;
165 InlineAsm::SubConstraintInfo &scInfo =
166 ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
167 if (scInfo.MatchingInput != -1)
168 return true;
169 // Note that operand #n has a matching input.
170 scInfo.MatchingInput = ConstraintsSoFar.size();
171 } else {
172 if (ConstraintsSoFar[N].hasMatchingInput() &&
173 (size_t)ConstraintsSoFar[N].MatchingInput !=
174 ConstraintsSoFar.size())
175 return true;
176 // Note that operand #n has a matching input.
177 ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
178 }
179 } else if (*I == '|') {
180 multipleAlternativeIndex++;
181 pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
182 ++I;
183 } else if (*I == '^') {
184 // Multi-letter constraint
185 // FIXME: For now assuming these are 2-character constraints.
186 pCodes->push_back(StringRef(I+1, 2));
187 I += 3;
188 } else {
189 // Single letter constraint.
190 pCodes->push_back(StringRef(I, 1));
191 ++I;
192 }
193 }
194
195 return false;
196 }
197
198 /// selectAlternative - Point this constraint to the alternative constraint
199 /// indicated by the index.
selectAlternative(unsigned index)200 void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
201 if (index < multipleAlternatives.size()) {
202 currentAlternativeIndex = index;
203 InlineAsm::SubConstraintInfo &scInfo =
204 multipleAlternatives[currentAlternativeIndex];
205 MatchingInput = scInfo.MatchingInput;
206 Codes = scInfo.Codes;
207 }
208 }
209
210 InlineAsm::ConstraintInfoVector
ParseConstraints(StringRef Constraints)211 InlineAsm::ParseConstraints(StringRef Constraints) {
212 ConstraintInfoVector Result;
213
214 // Scan the constraints string.
215 for (StringRef::iterator I = Constraints.begin(),
216 E = Constraints.end(); I != E; ) {
217 ConstraintInfo Info;
218
219 // Find the end of this constraint.
220 StringRef::iterator ConstraintEnd = std::find(I, E, ',');
221
222 if (ConstraintEnd == I || // Empty constraint like ",,"
223 Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
224 Result.clear(); // Erroneous constraint?
225 break;
226 }
227
228 Result.push_back(Info);
229
230 // ConstraintEnd may be either the next comma or the end of the string. In
231 // the former case, we skip the comma.
232 I = ConstraintEnd;
233 if (I != E) {
234 ++I;
235 if (I == E) {
236 Result.clear();
237 break;
238 } // don't allow "xyz,"
239 }
240 }
241
242 return Result;
243 }
244
245 /// Verify - Verify that the specified constraint string is reasonable for the
246 /// specified function type, and otherwise validate the constraint string.
Verify(FunctionType * Ty,StringRef ConstStr)247 bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
248 if (Ty->isVarArg()) return false;
249
250 ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
251
252 // Error parsing constraints.
253 if (Constraints.empty() && !ConstStr.empty()) return false;
254
255 unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
256 unsigned NumIndirect = 0;
257
258 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
259 switch (Constraints[i].Type) {
260 case InlineAsm::isOutput:
261 if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
262 return false; // outputs before inputs and clobbers.
263 if (!Constraints[i].isIndirect) {
264 ++NumOutputs;
265 break;
266 }
267 ++NumIndirect;
268 // FALLTHROUGH for Indirect Outputs.
269 case InlineAsm::isInput:
270 if (NumClobbers) return false; // inputs before clobbers.
271 ++NumInputs;
272 break;
273 case InlineAsm::isClobber:
274 ++NumClobbers;
275 break;
276 }
277 }
278
279 switch (NumOutputs) {
280 case 0:
281 if (!Ty->getReturnType()->isVoidTy()) return false;
282 break;
283 case 1:
284 if (Ty->getReturnType()->isStructTy()) return false;
285 break;
286 default:
287 StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
288 if (!STy || STy->getNumElements() != NumOutputs)
289 return false;
290 break;
291 }
292
293 if (Ty->getNumParams() != NumInputs) return false;
294 return true;
295 }
296