1 //==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that expands pseudo instructions into target
11 // instructions to allow proper scheduling and other late optimizations.  This
12 // pass should be run after register allocation but before the post-regalloc
13 // scheduling pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "AArch64InstrInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "llvm/CodeGen/LivePhysRegs.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/Support/MathExtras.h"
24 using namespace llvm;
25 
26 namespace llvm {
27 void initializeAArch64ExpandPseudoPass(PassRegistry &);
28 }
29 
30 #define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
31 
32 namespace {
33 class AArch64ExpandPseudo : public MachineFunctionPass {
34 public:
35   static char ID;
AArch64ExpandPseudo()36   AArch64ExpandPseudo() : MachineFunctionPass(ID) {
37     initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
38   }
39 
40   const AArch64InstrInfo *TII;
41 
42   bool runOnMachineFunction(MachineFunction &Fn) override;
43 
getPassName() const44   const char *getPassName() const override {
45     return AARCH64_EXPAND_PSEUDO_NAME;
46   }
47 
48 private:
49   bool expandMBB(MachineBasicBlock &MBB);
50   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
51                 MachineBasicBlock::iterator &NextMBBI);
52   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
53                     unsigned BitSize);
54 
55   bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
56                       unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
57                       unsigned ExtendImm, unsigned ZeroReg,
58                       MachineBasicBlock::iterator &NextMBBI);
59   bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
60                           MachineBasicBlock::iterator MBBI,
61                           MachineBasicBlock::iterator &NextMBBI);
62 };
63 char AArch64ExpandPseudo::ID = 0;
64 }
65 
66 INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
67                 AARCH64_EXPAND_PSEUDO_NAME, false, false)
68 
69 /// \brief Transfer implicit operands on the pseudo instruction to the
70 /// instructions created from the expansion.
transferImpOps(MachineInstr & OldMI,MachineInstrBuilder & UseMI,MachineInstrBuilder & DefMI)71 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
72                            MachineInstrBuilder &DefMI) {
73   const MCInstrDesc &Desc = OldMI.getDesc();
74   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
75        ++i) {
76     const MachineOperand &MO = OldMI.getOperand(i);
77     assert(MO.isReg() && MO.getReg());
78     if (MO.isUse())
79       UseMI.addOperand(MO);
80     else
81       DefMI.addOperand(MO);
82   }
83 }
84 
85 /// \brief Helper function which extracts the specified 16-bit chunk from a
86 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)87 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
88   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
89 
90   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
91 }
92 
93 /// \brief Helper function which replicates a 16-bit chunk within a 64-bit
94 /// value. Indices correspond to element numbers in a v4i16.
replicateChunk(uint64_t Imm,unsigned FromIdx,unsigned ToIdx)95 static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
96   assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
97   const unsigned ShiftAmt = ToIdx * 16;
98 
99   // Replicate the source chunk to the destination position.
100   const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
101   // Clear the destination chunk.
102   Imm &= ~(0xFFFFLL << ShiftAmt);
103   // Insert the replicated chunk.
104   return Imm | Chunk;
105 }
106 
107 /// \brief Helper function which tries to materialize a 64-bit value with an
108 /// ORR + MOVK instruction sequence.
tryOrrMovk(uint64_t UImm,uint64_t OrrImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII,unsigned ChunkIdx)109 static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
110                        MachineBasicBlock &MBB,
111                        MachineBasicBlock::iterator &MBBI,
112                        const AArch64InstrInfo *TII, unsigned ChunkIdx) {
113   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
114   const unsigned ShiftAmt = ChunkIdx * 16;
115 
116   uint64_t Encoding;
117   if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
118     // Create the ORR-immediate instruction.
119     MachineInstrBuilder MIB =
120         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
121             .addOperand(MI.getOperand(0))
122             .addReg(AArch64::XZR)
123             .addImm(Encoding);
124 
125     // Create the MOVK instruction.
126     const unsigned Imm16 = getChunk(UImm, ChunkIdx);
127     const unsigned DstReg = MI.getOperand(0).getReg();
128     const bool DstIsDead = MI.getOperand(0).isDead();
129     MachineInstrBuilder MIB1 =
130         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
131             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
132             .addReg(DstReg)
133             .addImm(Imm16)
134             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
135 
136     transferImpOps(MI, MIB, MIB1);
137     MI.eraseFromParent();
138     return true;
139   }
140 
141   return false;
142 }
143 
144 /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
145 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)146 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
147   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
148 
149   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
150 }
151 
152 /// \brief Check for identical 16-bit chunks within the constant and if so
153 /// materialize them with a single ORR instruction. The remaining one or two
154 /// 16-bit chunks will be materialized with MOVK instructions.
155 ///
156 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
157 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
158 /// an ORR instruction.
159 ///
tryToreplicateChunks(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)160 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
161                                  MachineBasicBlock &MBB,
162                                  MachineBasicBlock::iterator &MBBI,
163                                  const AArch64InstrInfo *TII) {
164   typedef DenseMap<uint64_t, unsigned> CountMap;
165   CountMap Counts;
166 
167   // Scan the constant and count how often every chunk occurs.
168   for (unsigned Idx = 0; Idx < 4; ++Idx)
169     ++Counts[getChunk(UImm, Idx)];
170 
171   // Traverse the chunks to find one which occurs more than once.
172   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
173        Chunk != End; ++Chunk) {
174     const uint64_t ChunkVal = Chunk->first;
175     const unsigned Count = Chunk->second;
176 
177     uint64_t Encoding = 0;
178 
179     // We are looking for chunks which have two or three instances and can be
180     // materialized with an ORR instruction.
181     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
182       continue;
183 
184     const bool CountThree = Count == 3;
185     // Create the ORR-immediate instruction.
186     MachineInstrBuilder MIB =
187         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
188             .addOperand(MI.getOperand(0))
189             .addReg(AArch64::XZR)
190             .addImm(Encoding);
191 
192     const unsigned DstReg = MI.getOperand(0).getReg();
193     const bool DstIsDead = MI.getOperand(0).isDead();
194 
195     unsigned ShiftAmt = 0;
196     uint64_t Imm16 = 0;
197     // Find the first chunk not materialized with the ORR instruction.
198     for (; ShiftAmt < 64; ShiftAmt += 16) {
199       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
200 
201       if (Imm16 != ChunkVal)
202         break;
203     }
204 
205     // Create the first MOVK instruction.
206     MachineInstrBuilder MIB1 =
207         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
208             .addReg(DstReg,
209                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
210             .addReg(DstReg)
211             .addImm(Imm16)
212             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
213 
214     // In case we have three instances the whole constant is now materialized
215     // and we can exit.
216     if (CountThree) {
217       transferImpOps(MI, MIB, MIB1);
218       MI.eraseFromParent();
219       return true;
220     }
221 
222     // Find the remaining chunk which needs to be materialized.
223     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
224       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
225 
226       if (Imm16 != ChunkVal)
227         break;
228     }
229 
230     // Create the second MOVK instruction.
231     MachineInstrBuilder MIB2 =
232         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
233             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
234             .addReg(DstReg)
235             .addImm(Imm16)
236             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
237 
238     transferImpOps(MI, MIB, MIB2);
239     MI.eraseFromParent();
240     return true;
241   }
242 
243   return false;
244 }
245 
246 /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
247 /// starts a contiguous sequence of ones if we look at the bits from the LSB
248 /// towards the MSB.
isStartChunk(uint64_t Chunk)249 static bool isStartChunk(uint64_t Chunk) {
250   if (Chunk == 0 || Chunk == UINT64_MAX)
251     return false;
252 
253   return isMask_64(~Chunk);
254 }
255 
256 /// \brief Check whether this chunk matches the pattern '0...1...' This pattern
257 /// ends a contiguous sequence of ones if we look at the bits from the LSB
258 /// towards the MSB.
isEndChunk(uint64_t Chunk)259 static bool isEndChunk(uint64_t Chunk) {
260   if (Chunk == 0 || Chunk == UINT64_MAX)
261     return false;
262 
263   return isMask_64(Chunk);
264 }
265 
266 /// \brief Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)267 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
268   const uint64_t Mask = 0xFFFF;
269 
270   if (Clear)
271     // Clear chunk in the immediate.
272     Imm &= ~(Mask << (Idx * 16));
273   else
274     // Set all bits in the immediate for the particular chunk.
275     Imm |= Mask << (Idx * 16);
276 
277   return Imm;
278 }
279 
280 /// \brief Check whether the constant contains a sequence of contiguous ones,
281 /// which might be interrupted by one or two chunks. If so, materialize the
282 /// sequence of contiguous ones with an ORR instruction.
283 /// Materialize the chunks which are either interrupting the sequence or outside
284 /// of the sequence with a MOVK instruction.
285 ///
286 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
287 /// which ends the sequence (0...1...). Then we are looking for constants which
288 /// contain at least one S and E chunk.
289 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
290 ///
291 /// We are also looking for constants like |S|A|B|E| where the contiguous
292 /// sequence of ones wraps around the MSB into the LSB.
293 ///
trySequenceOfOnes(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)294 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
295                               MachineBasicBlock &MBB,
296                               MachineBasicBlock::iterator &MBBI,
297                               const AArch64InstrInfo *TII) {
298   const int NotSet = -1;
299   const uint64_t Mask = 0xFFFF;
300 
301   int StartIdx = NotSet;
302   int EndIdx = NotSet;
303   // Try to find the chunks which start/end a contiguous sequence of ones.
304   for (int Idx = 0; Idx < 4; ++Idx) {
305     int64_t Chunk = getChunk(UImm, Idx);
306     // Sign extend the 16-bit chunk to 64-bit.
307     Chunk = (Chunk << 48) >> 48;
308 
309     if (isStartChunk(Chunk))
310       StartIdx = Idx;
311     else if (isEndChunk(Chunk))
312       EndIdx = Idx;
313   }
314 
315   // Early exit in case we can't find a start/end chunk.
316   if (StartIdx == NotSet || EndIdx == NotSet)
317     return false;
318 
319   // Outside of the contiguous sequence of ones everything needs to be zero.
320   uint64_t Outside = 0;
321   // Chunks between the start and end chunk need to have all their bits set.
322   uint64_t Inside = Mask;
323 
324   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
325   // just swap indices and pretend we are materializing a contiguous sequence
326   // of zeros surrounded by a contiguous sequence of ones.
327   if (StartIdx > EndIdx) {
328     std::swap(StartIdx, EndIdx);
329     std::swap(Outside, Inside);
330   }
331 
332   uint64_t OrrImm = UImm;
333   int FirstMovkIdx = NotSet;
334   int SecondMovkIdx = NotSet;
335 
336   // Find out which chunks we need to patch up to obtain a contiguous sequence
337   // of ones.
338   for (int Idx = 0; Idx < 4; ++Idx) {
339     const uint64_t Chunk = getChunk(UImm, Idx);
340 
341     // Check whether we are looking at a chunk which is not part of the
342     // contiguous sequence of ones.
343     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
344       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
345 
346       // Remember the index we need to patch.
347       if (FirstMovkIdx == NotSet)
348         FirstMovkIdx = Idx;
349       else
350         SecondMovkIdx = Idx;
351 
352       // Check whether we are looking a chunk which is part of the contiguous
353       // sequence of ones.
354     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
355       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
356 
357       // Remember the index we need to patch.
358       if (FirstMovkIdx == NotSet)
359         FirstMovkIdx = Idx;
360       else
361         SecondMovkIdx = Idx;
362     }
363   }
364   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
365 
366   // Create the ORR-immediate instruction.
367   uint64_t Encoding = 0;
368   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
369   MachineInstrBuilder MIB =
370       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
371           .addOperand(MI.getOperand(0))
372           .addReg(AArch64::XZR)
373           .addImm(Encoding);
374 
375   const unsigned DstReg = MI.getOperand(0).getReg();
376   const bool DstIsDead = MI.getOperand(0).isDead();
377 
378   const bool SingleMovk = SecondMovkIdx == NotSet;
379   // Create the first MOVK instruction.
380   MachineInstrBuilder MIB1 =
381       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
382           .addReg(DstReg,
383                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
384           .addReg(DstReg)
385           .addImm(getChunk(UImm, FirstMovkIdx))
386           .addImm(
387               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
388 
389   // Early exit in case we only need to emit a single MOVK instruction.
390   if (SingleMovk) {
391     transferImpOps(MI, MIB, MIB1);
392     MI.eraseFromParent();
393     return true;
394   }
395 
396   // Create the second MOVK instruction.
397   MachineInstrBuilder MIB2 =
398       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
399           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
400           .addReg(DstReg)
401           .addImm(getChunk(UImm, SecondMovkIdx))
402           .addImm(
403               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
404 
405   transferImpOps(MI, MIB, MIB2);
406   MI.eraseFromParent();
407   return true;
408 }
409 
410 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
411 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize)412 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
413                                        MachineBasicBlock::iterator MBBI,
414                                        unsigned BitSize) {
415   MachineInstr &MI = *MBBI;
416   unsigned DstReg = MI.getOperand(0).getReg();
417   uint64_t Imm = MI.getOperand(1).getImm();
418   const unsigned Mask = 0xFFFF;
419 
420   if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
421     // Useless def, and we don't want to risk creating an invalid ORR (which
422     // would really write to sp).
423     MI.eraseFromParent();
424     return true;
425   }
426 
427   // Try a MOVI instruction (aka ORR-immediate with the zero register).
428   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
429   uint64_t Encoding;
430   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
431     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
432     MachineInstrBuilder MIB =
433         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
434             .addOperand(MI.getOperand(0))
435             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
436             .addImm(Encoding);
437     transferImpOps(MI, MIB, MIB);
438     MI.eraseFromParent();
439     return true;
440   }
441 
442   // Scan the immediate and count the number of 16-bit chunks which are either
443   // all ones or all zeros.
444   unsigned OneChunks = 0;
445   unsigned ZeroChunks = 0;
446   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
447     const unsigned Chunk = (Imm >> Shift) & Mask;
448     if (Chunk == Mask)
449       OneChunks++;
450     else if (Chunk == 0)
451       ZeroChunks++;
452   }
453 
454   // Since we can't materialize the constant with a single ORR instruction,
455   // let's see whether we can materialize 3/4 of the constant with an ORR
456   // instruction and use an additional MOVK instruction to materialize the
457   // remaining 1/4.
458   //
459   // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
460   //
461   // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
462   // we would create the following instruction sequence:
463   //
464   // ORR x0, xzr, |A|X|A|X|
465   // MOVK x0, |B|, LSL #16
466   //
467   // Only look at 64-bit constants which can't be materialized with a single
468   // instruction e.g. which have less than either three all zero or all one
469   // chunks.
470   //
471   // Ignore 32-bit constants here, they always can be materialized with a
472   // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
473   // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
474   // Thus we fall back to the default code below which in the best case creates
475   // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
476   //
477   if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
478     // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
479     // identical?
480     if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
481       // See if we can come up with a constant which can be materialized with
482       // ORR-immediate by replicating element 3 into element 1.
483       uint64_t OrrImm = replicateChunk(UImm, 3, 1);
484       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
485         return true;
486 
487       // See if we can come up with a constant which can be materialized with
488       // ORR-immediate by replicating element 1 into element 3.
489       OrrImm = replicateChunk(UImm, 1, 3);
490       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
491         return true;
492 
493       // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
494       // identical?
495     } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
496       // See if we can come up with a constant which can be materialized with
497       // ORR-immediate by replicating element 2 into element 0.
498       uint64_t OrrImm = replicateChunk(UImm, 2, 0);
499       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
500         return true;
501 
502       // See if we can come up with a constant which can be materialized with
503       // ORR-immediate by replicating element 1 into element 3.
504       OrrImm = replicateChunk(UImm, 0, 2);
505       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
506         return true;
507     }
508   }
509 
510   // Check for identical 16-bit chunks within the constant and if so materialize
511   // them with a single ORR instruction. The remaining one or two 16-bit chunks
512   // will be materialized with MOVK instructions.
513   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
514     return true;
515 
516   // Check whether the constant contains a sequence of contiguous ones, which
517   // might be interrupted by one or two chunks. If so, materialize the sequence
518   // of contiguous ones with an ORR instruction. Materialize the chunks which
519   // are either interrupting the sequence or outside of the sequence with a
520   // MOVK instruction.
521   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
522     return true;
523 
524   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
525   // more MOVK instructions to insert additional 16-bit portions into the
526   // lower bits.
527   bool isNeg = false;
528 
529   // Use MOVN to materialize the high bits if we have more all one chunks
530   // than all zero chunks.
531   if (OneChunks > ZeroChunks) {
532     isNeg = true;
533     Imm = ~Imm;
534   }
535 
536   unsigned FirstOpc;
537   if (BitSize == 32) {
538     Imm &= (1LL << 32) - 1;
539     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
540   } else {
541     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
542   }
543   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
544   unsigned LastShift = 0; // LSL amount for last MOVK
545   if (Imm != 0) {
546     unsigned LZ = countLeadingZeros(Imm);
547     unsigned TZ = countTrailingZeros(Imm);
548     Shift = ((63 - LZ) / 16) * 16;
549     LastShift = (TZ / 16) * 16;
550   }
551   unsigned Imm16 = (Imm >> Shift) & Mask;
552   bool DstIsDead = MI.getOperand(0).isDead();
553   MachineInstrBuilder MIB1 =
554       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
555           .addReg(DstReg, RegState::Define |
556                               getDeadRegState(DstIsDead && Shift == LastShift))
557           .addImm(Imm16)
558           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
559 
560   // If a MOVN was used for the high bits of a negative value, flip the rest
561   // of the bits back for use with MOVK.
562   if (isNeg)
563     Imm = ~Imm;
564 
565   if (Shift == LastShift) {
566     transferImpOps(MI, MIB1, MIB1);
567     MI.eraseFromParent();
568     return true;
569   }
570 
571   MachineInstrBuilder MIB2;
572   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
573   while (Shift != LastShift) {
574     Shift -= 16;
575     Imm16 = (Imm >> Shift) & Mask;
576     if (Imm16 == (isNeg ? Mask : 0))
577       continue; // This 16-bit portion is already set correctly.
578     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
579                .addReg(DstReg,
580                        RegState::Define |
581                            getDeadRegState(DstIsDead && Shift == LastShift))
582                .addReg(DstReg)
583                .addImm(Imm16)
584                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
585   }
586 
587   transferImpOps(MI, MIB1, MIB2);
588   MI.eraseFromParent();
589   return true;
590 }
591 
addPostLoopLiveIns(MachineBasicBlock * MBB,LivePhysRegs & LiveRegs)592 static void addPostLoopLiveIns(MachineBasicBlock *MBB, LivePhysRegs &LiveRegs) {
593   for (auto I = LiveRegs.begin(); I != LiveRegs.end(); ++I)
594     MBB->addLiveIn(*I);
595 }
596 
expandCMP_SWAP(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned LdarOp,unsigned StlrOp,unsigned CmpOp,unsigned ExtendImm,unsigned ZeroReg,MachineBasicBlock::iterator & NextMBBI)597 bool AArch64ExpandPseudo::expandCMP_SWAP(
598     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
599     unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
600     MachineBasicBlock::iterator &NextMBBI) {
601   MachineInstr &MI = *MBBI;
602   DebugLoc DL = MI.getDebugLoc();
603   MachineOperand &Dest = MI.getOperand(0);
604   unsigned StatusReg = MI.getOperand(1).getReg();
605   MachineOperand &Addr = MI.getOperand(2);
606   MachineOperand &Desired = MI.getOperand(3);
607   MachineOperand &New = MI.getOperand(4);
608 
609   LivePhysRegs LiveRegs(&TII->getRegisterInfo());
610   LiveRegs.addLiveOuts(MBB);
611   for (auto I = std::prev(MBB.end()); I != MBBI; --I)
612     LiveRegs.stepBackward(*I);
613 
614   MachineFunction *MF = MBB.getParent();
615   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
616   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
617   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
618 
619   MF->insert(++MBB.getIterator(), LoadCmpBB);
620   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
621   MF->insert(++StoreBB->getIterator(), DoneBB);
622 
623   // .Lloadcmp:
624   //     ldaxr xDest, [xAddr]
625   //     cmp xDest, xDesired
626   //     b.ne .Ldone
627   LoadCmpBB->addLiveIn(Addr.getReg());
628   LoadCmpBB->addLiveIn(Dest.getReg());
629   LoadCmpBB->addLiveIn(Desired.getReg());
630   addPostLoopLiveIns(LoadCmpBB, LiveRegs);
631 
632   BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
633       .addReg(Addr.getReg());
634   BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
635       .addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
636       .addOperand(Desired)
637       .addImm(ExtendImm);
638   BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
639       .addImm(AArch64CC::NE)
640       .addMBB(DoneBB)
641       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
642   LoadCmpBB->addSuccessor(DoneBB);
643   LoadCmpBB->addSuccessor(StoreBB);
644 
645   // .Lstore:
646   //     stlxr wStatus, xNew, [xAddr]
647   //     cbnz wStatus, .Lloadcmp
648   StoreBB->addLiveIn(Addr.getReg());
649   StoreBB->addLiveIn(New.getReg());
650   addPostLoopLiveIns(StoreBB, LiveRegs);
651 
652   BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
653       .addOperand(New)
654       .addOperand(Addr);
655   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
656       .addReg(StatusReg, RegState::Kill)
657       .addMBB(LoadCmpBB);
658   StoreBB->addSuccessor(LoadCmpBB);
659   StoreBB->addSuccessor(DoneBB);
660 
661   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
662   DoneBB->transferSuccessors(&MBB);
663   addPostLoopLiveIns(DoneBB, LiveRegs);
664 
665   MBB.addSuccessor(LoadCmpBB);
666 
667   NextMBBI = MBB.end();
668   MI.eraseFromParent();
669   return true;
670 }
671 
expandCMP_SWAP_128(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)672 bool AArch64ExpandPseudo::expandCMP_SWAP_128(
673     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
674     MachineBasicBlock::iterator &NextMBBI) {
675 
676   MachineInstr &MI = *MBBI;
677   DebugLoc DL = MI.getDebugLoc();
678   MachineOperand &DestLo = MI.getOperand(0);
679   MachineOperand &DestHi = MI.getOperand(1);
680   unsigned StatusReg = MI.getOperand(2).getReg();
681   MachineOperand &Addr = MI.getOperand(3);
682   MachineOperand &DesiredLo = MI.getOperand(4);
683   MachineOperand &DesiredHi = MI.getOperand(5);
684   MachineOperand &NewLo = MI.getOperand(6);
685   MachineOperand &NewHi = MI.getOperand(7);
686 
687   LivePhysRegs LiveRegs(&TII->getRegisterInfo());
688   LiveRegs.addLiveOuts(MBB);
689   for (auto I = std::prev(MBB.end()); I != MBBI; --I)
690     LiveRegs.stepBackward(*I);
691 
692   MachineFunction *MF = MBB.getParent();
693   auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
694   auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
695   auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
696 
697   MF->insert(++MBB.getIterator(), LoadCmpBB);
698   MF->insert(++LoadCmpBB->getIterator(), StoreBB);
699   MF->insert(++StoreBB->getIterator(), DoneBB);
700 
701   // .Lloadcmp:
702   //     ldaxp xDestLo, xDestHi, [xAddr]
703   //     cmp xDestLo, xDesiredLo
704   //     sbcs xDestHi, xDesiredHi
705   //     b.ne .Ldone
706   LoadCmpBB->addLiveIn(Addr.getReg());
707   LoadCmpBB->addLiveIn(DestLo.getReg());
708   LoadCmpBB->addLiveIn(DestHi.getReg());
709   LoadCmpBB->addLiveIn(DesiredLo.getReg());
710   LoadCmpBB->addLiveIn(DesiredHi.getReg());
711   addPostLoopLiveIns(LoadCmpBB, LiveRegs);
712 
713   BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
714       .addReg(DestLo.getReg(), RegState::Define)
715       .addReg(DestHi.getReg(), RegState::Define)
716       .addReg(Addr.getReg());
717   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
718       .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
719       .addOperand(DesiredLo)
720       .addImm(0);
721   BuildMI(LoadCmpBB, DL, TII->get(AArch64::SBCSXr), AArch64::XZR)
722       .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
723       .addOperand(DesiredHi);
724   BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
725       .addImm(AArch64CC::NE)
726       .addMBB(DoneBB)
727       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
728   LoadCmpBB->addSuccessor(DoneBB);
729   LoadCmpBB->addSuccessor(StoreBB);
730 
731   // .Lstore:
732   //     stlxp wStatus, xNewLo, xNewHi, [xAddr]
733   //     cbnz wStatus, .Lloadcmp
734   StoreBB->addLiveIn(Addr.getReg());
735   StoreBB->addLiveIn(NewLo.getReg());
736   StoreBB->addLiveIn(NewHi.getReg());
737   addPostLoopLiveIns(StoreBB, LiveRegs);
738   BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
739       .addOperand(NewLo)
740       .addOperand(NewHi)
741       .addOperand(Addr);
742   BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
743       .addReg(StatusReg, RegState::Kill)
744       .addMBB(LoadCmpBB);
745   StoreBB->addSuccessor(LoadCmpBB);
746   StoreBB->addSuccessor(DoneBB);
747 
748   DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
749   DoneBB->transferSuccessors(&MBB);
750   addPostLoopLiveIns(DoneBB, LiveRegs);
751 
752   MBB.addSuccessor(LoadCmpBB);
753 
754   NextMBBI = MBB.end();
755   MI.eraseFromParent();
756   return true;
757 }
758 
759 /// \brief If MBBI references a pseudo instruction that should be expanded here,
760 /// do the expansion and return true.  Otherwise return false.
expandMI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineBasicBlock::iterator & NextMBBI)761 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
762                                    MachineBasicBlock::iterator MBBI,
763                                    MachineBasicBlock::iterator &NextMBBI) {
764   MachineInstr &MI = *MBBI;
765   unsigned Opcode = MI.getOpcode();
766   switch (Opcode) {
767   default:
768     break;
769 
770   case AArch64::ADDWrr:
771   case AArch64::SUBWrr:
772   case AArch64::ADDXrr:
773   case AArch64::SUBXrr:
774   case AArch64::ADDSWrr:
775   case AArch64::SUBSWrr:
776   case AArch64::ADDSXrr:
777   case AArch64::SUBSXrr:
778   case AArch64::ANDWrr:
779   case AArch64::ANDXrr:
780   case AArch64::BICWrr:
781   case AArch64::BICXrr:
782   case AArch64::ANDSWrr:
783   case AArch64::ANDSXrr:
784   case AArch64::BICSWrr:
785   case AArch64::BICSXrr:
786   case AArch64::EONWrr:
787   case AArch64::EONXrr:
788   case AArch64::EORWrr:
789   case AArch64::EORXrr:
790   case AArch64::ORNWrr:
791   case AArch64::ORNXrr:
792   case AArch64::ORRWrr:
793   case AArch64::ORRXrr: {
794     unsigned Opcode;
795     switch (MI.getOpcode()) {
796     default:
797       return false;
798     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
799     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
800     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
801     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
802     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
803     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
804     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
805     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
806     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
807     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
808     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
809     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
810     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
811     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
812     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
813     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
814     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
815     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
816     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
817     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
818     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
819     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
820     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
821     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
822     }
823     MachineInstrBuilder MIB1 =
824         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
825                 MI.getOperand(0).getReg())
826             .addOperand(MI.getOperand(1))
827             .addOperand(MI.getOperand(2))
828             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
829     transferImpOps(MI, MIB1, MIB1);
830     MI.eraseFromParent();
831     return true;
832   }
833 
834   case AArch64::LOADgot: {
835     // Expand into ADRP + LDR.
836     unsigned DstReg = MI.getOperand(0).getReg();
837     const MachineOperand &MO1 = MI.getOperand(1);
838     unsigned Flags = MO1.getTargetFlags();
839     MachineInstrBuilder MIB1 =
840         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
841     MachineInstrBuilder MIB2 =
842         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
843             .addOperand(MI.getOperand(0))
844             .addReg(DstReg);
845 
846     if (MO1.isGlobal()) {
847       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
848       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
849                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
850     } else if (MO1.isSymbol()) {
851       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
852       MIB2.addExternalSymbol(MO1.getSymbolName(),
853                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
854     } else {
855       assert(MO1.isCPI() &&
856              "Only expect globals, externalsymbols, or constant pools");
857       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
858                                 Flags | AArch64II::MO_PAGE);
859       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
860                                 Flags | AArch64II::MO_PAGEOFF |
861                                     AArch64II::MO_NC);
862     }
863 
864     transferImpOps(MI, MIB1, MIB2);
865     MI.eraseFromParent();
866     return true;
867   }
868 
869   case AArch64::MOVaddr:
870   case AArch64::MOVaddrJT:
871   case AArch64::MOVaddrCP:
872   case AArch64::MOVaddrBA:
873   case AArch64::MOVaddrTLS:
874   case AArch64::MOVaddrEXT: {
875     // Expand into ADRP + ADD.
876     unsigned DstReg = MI.getOperand(0).getReg();
877     MachineInstrBuilder MIB1 =
878         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
879             .addOperand(MI.getOperand(1));
880 
881     MachineInstrBuilder MIB2 =
882         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
883             .addOperand(MI.getOperand(0))
884             .addReg(DstReg)
885             .addOperand(MI.getOperand(2))
886             .addImm(0);
887 
888     transferImpOps(MI, MIB1, MIB2);
889     MI.eraseFromParent();
890     return true;
891   }
892 
893   case AArch64::MOVi32imm:
894     return expandMOVImm(MBB, MBBI, 32);
895   case AArch64::MOVi64imm:
896     return expandMOVImm(MBB, MBBI, 64);
897   case AArch64::RET_ReallyLR: {
898     MachineInstrBuilder MIB =
899         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
900           .addReg(AArch64::LR);
901     transferImpOps(MI, MIB, MIB);
902     MI.eraseFromParent();
903     return true;
904   }
905   case AArch64::CMP_SWAP_8:
906     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
907                           AArch64::SUBSWrx,
908                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
909                           AArch64::WZR, NextMBBI);
910   case AArch64::CMP_SWAP_16:
911     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
912                           AArch64::SUBSWrx,
913                           AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
914                           AArch64::WZR, NextMBBI);
915   case AArch64::CMP_SWAP_32:
916     return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
917                           AArch64::SUBSWrs,
918                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
919                           AArch64::WZR, NextMBBI);
920   case AArch64::CMP_SWAP_64:
921     return expandCMP_SWAP(MBB, MBBI,
922                           AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
923                           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
924                           AArch64::XZR, NextMBBI);
925   case AArch64::CMP_SWAP_128:
926     return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
927   }
928   return false;
929 }
930 
931 /// \brief Iterate over the instructions in basic block MBB and expand any
932 /// pseudo instructions.  Return true if anything was modified.
expandMBB(MachineBasicBlock & MBB)933 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
934   bool Modified = false;
935 
936   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
937   while (MBBI != E) {
938     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
939     Modified |= expandMI(MBB, MBBI, NMBBI);
940     MBBI = NMBBI;
941   }
942 
943   return Modified;
944 }
945 
runOnMachineFunction(MachineFunction & MF)946 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
947   TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
948 
949   bool Modified = false;
950   for (auto &MBB : MF)
951     Modified |= expandMBB(MBB);
952   return Modified;
953 }
954 
955 /// \brief Returns an instance of the pseudo instruction expansion pass.
createAArch64ExpandPseudoPass()956 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
957   return new AArch64ExpandPseudo();
958 }
959